The topic of robustness is experiencing a resurgence of interest in the statistical and machine learning communities. In particular, robust algorithms making use of the so-called median of means estimator were shown to satisfy strong performance guarantees for many problems, including estimation of the mean, covariance structure as well as linear regression. In this work, we propose an extension of the median of means principle to the Bayesian framework, leading to the notion of the robust posterior distribution. In particular, we (a) quantify robustness of this posterior to outliers, (b) show that it satisfies a version of the Bernstein-von Mises theorem that connects Bayesian credible sets to the traditional confidence intervals, and (c) demonstrate that our approach performs well in applications.
more »
« less
Covariances, robustness and variational Bayes
Mean-field Variational Bayes (MFVB) is an approximate Bayesian posterior inference technique that is increasingly popular due to its fast runtimes on large-scale data sets. However, even when MFVB provides accurate posterior means for certain parameters, it often mis-estimates variances and covariances. Furthermore, prior robustness measures have remained undeveloped for MFVB. By deriving a simple formula for the effect of infinitesimal model perturbations on MFVB posterior means, we provide both improved covariance estimates and local robustness measures for MFVB, thus greatly expanding the practical usefulness of MFVB posterior approximations. The estimates for MFVB posterior covariances rely on a result from the classical Bayesian robustness literature that relates derivatives of posterior expectations to posterior covariances and includes the Laplace approximation as a special case. Our key condition is that the MFVB approximation provides good estimates of a select subset of posterior means---an assumption that has been shown to hold in many practical settings. In our experiments, we demonstrate that our methods are simple, general, and fast, providing accurate posterior uncertainty estimates and robustness measures with runtimes that can be an order of magnitude faster than MCMC.
more »
« less
- Award ID(s):
- 1750286
- PAR ID:
- 10085570
- Date Published:
- Journal Name:
- Journal of machine learning research
- Volume:
- 19
- Issue:
- 51
- ISSN:
- 1532-4435
- Page Range / eLocation ID:
- 1 - 49
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The topic of robustness is experiencing a resurgence of interest in the statistical and machine learning communities. In particular, robust algorithms making use of the so-called median of means estimator were shown to satisfy strong performance guarantees for many problems, including estimation of the mean, covariance structure as well as linear regression. In this work, we propose an extension of the median of means principle to the Bayesian framework, leading to the notion of the robust posterior distribution. In particular, we (a) quantify robustness of this posterior to outliers, (b) show that it satisfies a version of the Bernstein-von Mises theorem that connects Bayesian credible sets to the traditional confidence intervals, and (c) demonstrate that our approach performs well in applications.more » « less
-
Due to the high dimensional integration over latent variables, computing marginal likelihood and posterior distributions for the parameters of a general hierarchical model is a difficult task. The Markov Chain Monte Carlo (MCMC) algorithms are commonly used to approximate the posterior distributions. These algorithms, though effective, are computationally intensive and can be slow for large, complex models. As an alternative to the MCMC approach, the Laplace approximation (LA) has been successfully used to obtain fast and accurate approximations to the posterior mean and other derived quantities related to the posterior distribution. In the last couple of decades, LA has also been used to approximate the marginal likelihood function and the posterior distribution. In this paper, we show that the bias in the Laplace approximation to the marginal likelihood has substantial practical consequences.more » « less
-
Data-driven Deep Learning (DL) models have revolutionized autonomous systems, but ensuring their safety and reliability necessitates the assessment of predictive confidence or uncertainty. Bayesian DL provides a principled approach to quantify uncertainty via probability density functions defined over model parameters. However, the exact solution is intractable for most DL models, and the approximation methods, often based on heuristics, suffer from scalability issues and stringent distribution assumptions and may lack theoretical guarantees. This work develops a Sequential Importance Sampling framework that approximates the posterior probability density function through weighted samples (or particles), which can be used to find the mean, variance, or higher-order moments of the posterior distribution. We demonstrate that propagating particles, which capture information about the higher-order moments, through the layers of the DL model results in increased robustness to natural and malicious noise (adversarial attacks). The variance computed from these particles effectively quantifies the model’s decision uncertainty, demonstrating well-calibrated and accurate predictive confidence.more » « less
-
The formulation of Bayesian inverse problems involves choosing prior distributions; choices that seem equally reason-able may lead to significantly different conclusions. We develop a computational approach to understand the impact of the hyperparameters defining the prior on the posterior statistics of the quantities of interest. Our approach relies on global sensitivity analysis (GSA) of Bayesian inverse problems with respect to the prior hyperparameters. This, however, is a challenging problem-a naive double loop sampling approach would require running a prohibitive number of Markov chain Monte Carlo (MCMC) sampling procedures. The present work takes a foundational step in making such a sensitivity analysis practical by combining efficient surrogate models and a tailored importance sampling approach. In particular, we can perform accurate GSA of posterior statistics of quantities of interest with respect to prior hyperparameters without the need to repeat MCMC runs. We demonstrate the effectiveness of the approach on a simple Bayesian linear inverse problem and a nonlinear inverse problem governed by an epidemiological model.more » « less
An official website of the United States government

