skip to main content


Title: Metalearners for estimating heterogeneous treatment effects using machine learning

There is growing interest in estimating and analyzing heterogeneous treatment effects in experimental and observational studies. We describe a number of metaalgorithms that can take advantage of any supervised learning or regression method in machine learning and statistics to estimate the conditional average treatment effect (CATE) function. Metaalgorithms build on base algorithms—such as random forests (RFs), Bayesian additive regression trees (BARTs), or neural networks—to estimate the CATE, a function that the base algorithms are not designed to estimate directly. We introduce a metaalgorithm, the X-learner, that is provably efficient when the number of units in one treatment group is much larger than in the other and can exploit structural properties of the CATE function. For example, if the CATE function is linear and the response functions in treatment and control are Lipschitz-continuous, the X-learner can still achieve the parametric rate under regularity conditions. We then introduce versions of the X-learner that use RF and BART as base learners. In extensive simulation studies, the X-learner performs favorably, although none of the metalearners is uniformly the best. In two persuasion field experiments from political science, we demonstrate how our X-learner can be used to target treatment regimes and to shed light on underlying mechanisms. A software package is provided that implements our methods.

 
more » « less
NSF-PAR ID:
10086057
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Proceedings of the National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
116
Issue:
10
ISSN:
0027-8424
Page Range / eLocation ID:
p. 4156-4165
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Propensity score methods account for selection bias in observational studies. However, the consistency of the propensity score estimators strongly depends on a correct specification of the propensity score model. Logistic regression and, with increasing popularity, machine learning tools are used to estimate propensity scores. We introduce a stacked generalization ensemble learning approach to improve propensity score estimation by fitting a meta learner on the predictions of a suitable set of diverse base learners. We perform a comprehensive Monte Carlo simulation study, implementing a broad range of scenarios that mimic characteristics of typical data sets in educational studies. The population average treatment effect is estimated using the propensity score in Inverse Probability of Treatment Weighting. Our proposed stacked ensembles, especially using gradient boosting machines as a meta learner trained on a set of 12 base learner predictions, led to superior reduction of bias compared to the current state-of-the-art in propensity score estimation. Further, our simulations imply that commonly used balance measures (averaged standardized absolute mean differences) might be misleading as propensity score model selection criteria. We apply our proposed model - which we call GBM-Stack - to assess the population average treatment effect of a Supplemental Instruction (SI) program in an introductory psychology (PSY 101) course at San Diego State University. Our analysis provides evidence that moving the whole population to SI attendance would on average lead to 1.69 times higher odds to pass the PSY 101 class compared to not offering SI, with a 95% bootstrap confidence interval of (1.31, 2.20). 
    more » « less
  2. The conditional average treatment effect (CATE) is the best measure of individual causal effects given baseline covariates. However, the CATE only captures the (conditional) average, and can overlook risks and tail events, which are important to treatment choice. In aggregate analyses, this is usually addressed by measuring the distributional treatment effect (DTE), such as differences in quantiles or tail expectations between treatment groups. Hypothetically, one can similarly fit conditional quantile regressions in each treatment group and take their difference, but this would not be robust to misspecification or provide agnostic best-in-class predictions. We provide a new robust and model-agnostic methodology for learning the conditional DTE (CDTE) for a class of problems that includes conditional quantile treatment effects, conditional super-quantile treatment effects, and conditional treatment effects on coherent risk measures given by f-divergences. Our method is based on constructing a special pseudo-outcome and regressing it on covariates using any regression learner. Our method is model-agnostic in that it can provide the best projection of CDTE onto the regression model class. Our method is robust in that even if we learn these nuisances nonparametrically at very slow rates, we can still learn CDTEs at rates that depend on the class complexity and even conduct inferences on linear projections of CDTEs. We investigate the behavior of our proposal in simulations, as well as in a case study of 401(k) eligibility effects on wealth. 
    more » « less
  3. Machine learning (ML) methods for causal inference have gained popularity due to their flexibility to predict the outcome model and the propensity score. In this article, we provide a within-group approach for ML-based causal inference methods in order to robustly estimate average treatment effects in multilevel studies when there is cluster-level unmeasured confounding. We focus on one particular ML-based causal inference method based on the targeted maximum likelihood estimation (TMLE) with an ensemble learner called SuperLearner. Through our simulation studies, we observe that training TMLE within groups of similar clusters helps remove bias from cluster-level unmeasured confounders. Also, using within-group propensity scores estimated from fixed effects logistic regression increases the robustness of the proposed within-group TMLE method. Even if the propensity scores are partially misspecified, the within-group TMLE still produces robust ATE estimates due to double robustness with flexible modeling, unlike parametric-based inverse propensity weighting methods. We demonstrate our proposed methods and conduct sensitivity analyses against the number of groups and individual-level unmeasured confounding to evaluate the effect of taking an eighth-grade algebra course on math achievement in the Early Childhood Longitudinal Study.

     
    more » « less
  4. Because the average treatment effect (ATE) measures the change in social welfare, even if positive, there is a risk of negative effect on, say, some 10% of the population. Assessing such risk is difficult, however, because any one individual treatment effect (ITE) is never observed, so the 10% worst-affected cannot be identified, whereas distributional treatment effects only compare the first deciles within each treatment group, which does not correspond to any 10% subpopulation. In this paper, we consider how to nonetheless assess this important risk measure, formalized as the conditional value at risk (CVaR) of the ITE distribution. We leverage the availability of pretreatment covariates and characterize the tightest possible upper and lower bounds on ITE-CVaR given by the covariate-conditional average treatment effect (CATE) function. We then proceed to study how to estimate these bounds efficiently from data and construct confidence intervals. This is challenging even in randomized experiments as it requires understanding the distribution of the unknown CATE function, which can be very complex if we use rich covariates to best control for heterogeneity. We develop a debiasing method that overcomes this and prove it enjoys favorable statistical properties even when CATE and other nuisances are estimated by black box machine learning or even inconsistently. Studying a hypothetical change to French job search counseling services, our bounds and inference demonstrate a small social benefit entails a negative impact on a substantial subpopulation. This paper was accepted by J. George Shanthikumar, data science. Funding: This work was supported by the Division of Information and Intelligent Systems [Grant 1939704]. Supplemental Material: The data files and online appendices are available at https://doi.org/10.1287/mnsc.2023.4819 . 
    more » « less
  5. Many causal and structural effects depend on regressions. Examples include policy effects, average derivatives, regression decompositions, average treatment effects, causal mediation, and parameters of economic structural models. The regressions may be high‐dimensional, making machine learning useful. Plugging machine learners into identifying equations can lead to poor inference due to bias from regularization and/or model selection. This paper gives automatic debiasing for linear and nonlinear functions of regressions. The debiasing is automatic in using Lasso and the function of interest without the full form of the bias correction. The debiasing can be applied to any regression learner, including neural nets, random forests, Lasso, boosting, and other high‐dimensional methods. In addition to providing the bias correction, we give standard errors that are robust to misspecification, convergence rates for the bias correction, and primitive conditions for asymptotic inference for estimators of a variety of estimators of structural and causal effects. The automatic debiased machine learning is used to estimate the average treatment effect on the treated for the NSW job training data and to estimate demand elasticities from Nielsen scanner data while allowing preferences to be correlated with prices and income. 
    more » « less