skip to main content


Title: Dissipation Characteristics of Tornadic Vortex Signatures Associated with Long-Duration Tornadoes

Weather Surveillance Radar–1988 Doppler (WSR-88D) data from 36 tornadic supercell cases from 2012 to 2016 are investigated to identify common tornadic vortex signature (TVS) behaviors prior to tornado dissipation. Based on the results of past case studies, four characteristics of TVSs associated with tornado dissipation were identified: weak or decreasing TVS intensity, rearward storm-relative motion of the TVS, large or increasing TVS vertical tilt, and large or increasing TVS horizontal displacement from the main storm updraft. Only cases in which a TVS was within 60 km of a WSR-88D site in at least four consecutive volumes at the end of the tornado life cycle were examined. The space and time restrictions on case selection ensured that the aforementioned quantities could be determined within ~500 m of the surface at several time periods despite the relatively coarse spatiotemporal resolution of WSR-88D systems. It is found that prior to dissipation, TVSs become increasingly less intense, tend to move rearward in a storm-relative framework, and become increasingly more separated from the approximate location of the main storm updraft. There is no clear signal in the relationship between tornado tilt, as measured in inclination angle, and TVS dissipation. The frequency of combinations of TVS dissipation behaviors, the impact of increased low-level WSR-88D scanning on dissipation detection, and prospects for future nowcasting of tornado life cycles also are discussed.

 
more » « less
Award ID(s):
1748191 1748177
NSF-PAR ID:
10086156
Author(s) / Creator(s):
 ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of Applied Meteorology and Climatology
Volume:
58
Issue:
2
ISSN:
1558-8424
Page Range / eLocation ID:
p. 317-339
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Polarimetric radar data from the WSR-88D network are used to examine the evolution of various polarimetric precursor signatures to tornado dissipation within a sample of 36 supercell storms. These signatures include an increase in bulk hook echo median raindrop size, a decrease in midlevel differential radar reflectivity factor (ZDR) column area, a decrease in the magnitude of theZDRarc, an increase in the area of low-level large hail, and a decrease in the orientation angle of the vector separating low-levelZDRand specific differential phase (KDP) maxima. Only supercells that produced “long-duration” tornadoes (with at least four consecutive volumes of WSR-88D data) are investigated, so that signatures can be sufficiently tracked in time, and novel algorithms are used to isolate each storm-scale process. During the time leading up to tornado dissipation, we find that hook echo median drop size (D0) and medianZDRremain relatively constant, but hook echo medianKDPand estimated number concentration (NT) increase. TheZDRarc maximum magnitude andZDRKDPseparation orientation angles are observed to decrease in most dissipation cases. Neither the area of large hail nor theZDRcolumn area exhibit strong signals leading up to tornado dissipation. Finally, combinations of storm-scale behaviors and TVS behaviors occur most frequently just prior to tornado dissipation, but also are common 15–20 min prior to dissipation. The results from this study provide evidence that nowcasting tornado dissipation using dual-polarization radar may be possible when combined with TVS monitoring, subject to important caveats.

     
    more » « less
  2. Abstract

    This case study analyzes a tornadic supercell observed in northeast Louisiana as part of the Verification of the Origins of Rotation in Tornadoes Experiment Southeast (VORTEX-SE) on 6–7 April 2018. One mobile research radar (SR1-P), one WSR-88D equivalent (KULM), and two airborne radars (TAFT and TFOR) have sampled the storm at close proximity for ∼70 min through its mature phase, tornadogenesis at 2340 UTC, and dissipation and subsequent ingestion into a developing MCS segment. The 4D wind field and reflectivity from up to four Doppler analyses, combined with 4D diabatic Lagrangian analysis (DLA) retrievals, has enabled kinematic and thermodynamic analysis of storm-scale boundaries leading up to, during, and after the dissipation of the NWS-surveyed EF0 tornado. The kinematic and thermodynamic analyses reveal a transient current of low-level streamwise vorticity leading into the low-level supercell updraft, appearing similar to the streamwise vorticity current (SVC) that has been identified in supercell simulations and previously observed only kinematically. Vorticity dynamical calculations demonstrate that both baroclinity and horizontal stretching play significant roles in the generation and amplification of streamwise vorticity associated with this SVC. While the SVC does not directly feed streamwise vorticity to the tornado–cyclone, its development coincides with tornadogenesis and an intensification of the supercell’s main low-level updraft, although a causal relationship is unclear. Although the mesoscale environment is not high-shear/low-CAPE (HSLC), the updraft of the analyzed supercell shares some similarities to past observations and simulations of HSLC storms in the Southeast United States, most notably a pulse-like updraft that is maximized in the low- to midlevels of the storm.

    Significance Statement

    The purpose of this study is to analyze the airflow and thermodynamics of a highly observed tornado-producing supercell. While computer simulations can provide us with highly detailed looks at the complicated evolution of supercells, it is rare, due to the difficulty of data collection, to collect enough data to perform a highly detailed analysis on a particular supercell, especially in the Southeast United States. We identified a “current” of vorticity—rotating wind—that develops at the intersection of the supercell’s rain-cooled outflow and warm inflow, similar to previous simulations. This vorticity current develops and feeds the storm’s updraft as its tornado develops and the storm intensifies, although it does not directly enter the tornado.

     
    more » « less
  3. Abstract It has long been observed that interactions of a supercell with other storms or storm-scale boundaries sometimes seem to directly instigate tornadogenesis. First, the authors explore the frequency of such constructive interactions. WSR-88D radar data are used to categorize 136 tornadic supercells into isolated supercells and supercells that interacted with external factors within 20 min before tornadogenesis. Most cases (80%) showed some form of external influence prior to tornadogenesis. Common patterns of interactions, the typical supercell quadrant that is affected, and changes in azimuthal shear are also identified. To further study these interactions, two sets of idealized CM1 simulations are performed. The first set demonstrates that the speed of the near-ground horizontal flow relative to the updraft can control whether a vortex patch develops into a tornado. A weaker updraft-relative flow is favorable because the developing vortex stays in the updraft region longer and becomes less tilted. Building on these results, it is shown that external outflow can lead to tornado formation by a deceleration of the updraft-relative flow. The deceleration is caused by the pressure gradient force associated with the external outflow, which is already noticeable several kilometers ahead of the outflow boundary. This offers another possible mechanism by which external outflow can act as a catalyst for supercell tornadogenesis. 
    more » « less
  4. null (Ed.)
    Abstract Tornadic supercells moved across parts of Oklahoma on the afternoon and evening of 9 May 2016. One such supercell, while producing a long-lived tornado, was observed by nearby WSR-88D radars to contain a strong anticyclonic velocity couplet on the lowest elevation angle. This couplet was located in a very atypical position relative to the ongoing cyclonic tornado and to the supercell’s updraft. A storm survey team identified damage near where this couplet occurred, and, in the absence of evidence refuting otherwise, the damage was thought to have been produced by an anticyclonic tornado. However, such a tornado was not seen in near-ground, high-resolution radar data from a much closer, rapid-scan, mobile radar. Rather, an elongated velocity couplet was observed only at higher elevation angles at altitudes similar to those at which the WSR-88D radars observed the strong couplet. This paper examines observations from two WSR-88D radars and a mobile radar from which it is argued that the anticyclonic couplet (and a similar one ~10 min later) were actually quasi-horizontal vortices centered ~1–1.5 km AGL. The benefits of having data from a radar much closer to the convective storm being sampled (e.g., better spatial resolution and near-ground data coverage) and providing more rapid volume updates are readily apparent. An analysis of these additional radar data provides strong, but not irrefutable, evidence that the anticyclonic tornado that may be inferred from WSR-88D data did not exist; consequently, upon discussions with the National Weather Service, it was not included in Storm Data. 
    more » « less
  5. null (Ed.)
    Abstract Rapid-scan polarimetric data analysis of the dissipation of a likely violent supercell tornado that struck near Sulphur, Oklahoma, on 9 May 2016 is presented. The Rapid X-band Polarimetric Radar was used to obtain data of the tornado at the end of its mature phase and during its entire dissipation phase. The analysis is presented in two parts: dissipation characteristics of the tornadic vortex signature (TVS) associated with the tornado and storm-scale polarimetric features that may be related to processes contributing to tornado dissipation. The TVS exhibited near-surface radial velocities exceeding 100 m s−1 multiple times at the end of its mature phase, and then underwent a two-phased dissipation. Initially, decreases in near-surface intensity occurred rapidly over a ~5-min period followed by a slower decline in intensity that lasted an additional ~12 min. The dissipation of the TVS in time and height in the lowest 2 km above radar level and oscillatory storm-relative motion of the TVS also are discussed. Using polarimetric data, a well-defined low reflectivity ribbon is investigated for its vertical development, evolution, and relationship to the large tornadic debris signature (TDS) collocated with the TVS. The progression of the TDS during dissipation also is discussed with a focus on the presence of several bands of reduced copolar correlation coefficient that extend away from the main TDS and the eventual erosion of the TDS as the tornado dissipated. Finally, TVS and polarimetric data are combined to argue for the importance of a possible internal rear-flank downdraft momentum surge in contributing to the initial rapid dissipation of the tornado. 
    more » « less