skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An Analysis of an Ostensible Anticyclonic Tornado from 9 May 2016 Using High-Resolution, Rapid-Scan Radar Data
Abstract Tornadic supercells moved across parts of Oklahoma on the afternoon and evening of 9 May 2016. One such supercell, while producing a long-lived tornado, was observed by nearby WSR-88D radars to contain a strong anticyclonic velocity couplet on the lowest elevation angle. This couplet was located in a very atypical position relative to the ongoing cyclonic tornado and to the supercell’s updraft. A storm survey team identified damage near where this couplet occurred, and, in the absence of evidence refuting otherwise, the damage was thought to have been produced by an anticyclonic tornado. However, such a tornado was not seen in near-ground, high-resolution radar data from a much closer, rapid-scan, mobile radar. Rather, an elongated velocity couplet was observed only at higher elevation angles at altitudes similar to those at which the WSR-88D radars observed the strong couplet. This paper examines observations from two WSR-88D radars and a mobile radar from which it is argued that the anticyclonic couplet (and a similar one ~10 min later) were actually quasi-horizontal vortices centered ~1–1.5 km AGL. The benefits of having data from a radar much closer to the convective storm being sampled (e.g., better spatial resolution and near-ground data coverage) and providing more rapid volume updates are readily apparent. An analysis of these additional radar data provides strong, but not irrefutable, evidence that the anticyclonic tornado that may be inferred from WSR-88D data did not exist; consequently, upon discussions with the National Weather Service, it was not included in Storm Data.  more » « less
Award ID(s):
1947146
PAR ID:
10199482
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Weather and Forecasting
Volume:
35
Issue:
5
ISSN:
0882-8156
Page Range / eLocation ID:
1685 to 1712
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This study utilizes data collected by the University of Oklahoma Advanced Radar Research Center’s Polarimetric Radar for Innovations in Meteorology and Engineering (OU-PRIME) C-band radar as well as the federal KTLX and KOUN WSR-88D S-band radars to study a supercell that simultaneously produced a long-track EF-4 tornado and an EF-2 landspout tornado (EF indicates the enhanced Fujita scale) near Norman, Oklahoma, on 10 May 2010. Contrasting polarimetric characteristics of two tornadoes over similar land cover but with different intensities are documented. Also, the storm-scale sedimentation of debris within the supercell is investigated, which includes observations of rotation and elongation of a tornadic debris signature with height. A dual-wavelength comparison of debris at S and C bands is performed. These analyses indicate that lofted debris within the tornado was larger than debris located outside the damage path of the tornado and that debris size outside the tornado increased with height, likely as the result of centrifuging. Profiles of polarimetric variables were observed to become more vertically homogeneous with time. 
    more » « less
  2. Weather Surveillance Radar–1988 Doppler (WSR-88D) data from 36 tornadic supercell cases from 2012 to 2016 are investigated to identify common tornadic vortex signature (TVS) behaviors prior to tornado dissipation. Based on the results of past case studies, four characteristics of TVSs associated with tornado dissipation were identified: weak or decreasing TVS intensity, rearward storm-relative motion of the TVS, large or increasing TVS vertical tilt, and large or increasing TVS horizontal displacement from the main storm updraft. Only cases in which a TVS was within 60 km of a WSR-88D site in at least four consecutive volumes at the end of the tornado life cycle were examined. The space and time restrictions on case selection ensured that the aforementioned quantities could be determined within ~500 m of the surface at several time periods despite the relatively coarse spatiotemporal resolution of WSR-88D systems. It is found that prior to dissipation, TVSs become increasingly less intense, tend to move rearward in a storm-relative framework, and become increasingly more separated from the approximate location of the main storm updraft. There is no clear signal in the relationship between tornado tilt, as measured in inclination angle, and TVS dissipation. The frequency of combinations of TVS dissipation behaviors, the impact of increased low-level WSR-88D scanning on dissipation detection, and prospects for future nowcasting of tornado life cycles also are discussed. 
    more » « less
  3. On 27 May 2015, the Atmospheric Imaging Radar (AIR) collected high-temporal resolution radar observations of an EF-2 tornado near Canadian, Texas. The AIR is a mobile, X-band, imaging radar that uses digital beamforming to collect simultaneous RHI scans while steering mechanically in azimuth to obtain rapid-update weather data. During this deployment, 20°-by-80° (elevation × azimuth) sector volumes were collected every 5.5 s at ranges as close as 6 km. The AIR captured the late-mature and decaying stages of the tornado. Early in the deployment, the tornado had a radius of maximum winds (RMW) of 500 m and exhibited maximum Doppler velocities near 65 m s−1. This study documents the rapid changes associated with the dissipation stages of the tornado. A 10-s resolution time–height investigation of vortex tilt and differential velocity [Formula: see text] is presented and illustrates an instance of upward vortex intensification as well as downward tornado decay. Changes in tornado intensity over periods of less than 30 s coincided with rapid changes in tornado diameter. At least two small-scale vortices were observed being shed from the tornado during a brief weakening period. A persistent layer of vortex tilt was observed near the level of free convection, which separated two layers with contrasting modes of tornado decay. Finally, the vertical cross correlation of vortex intensity reveals that apart from the brief instances of upward vortex intensification and downward decay, tornado intensity was highly correlated throughout the observation period. 
    more » « less
  4. Abstract The scientific community has long acknowledged the importance of high-temporal-resolution radar observations to advance science research and improve high-impact weather prediction. Development of innovative rapid-scan radar technologies over the past two decades has enabled radar volume scans of 10–60 s compared to 3–5 min with traditional parabolic dish research radars and the WSR-88D radar network. This review examines the impact of rapid-scan radar technology, defined as radars collecting volume scans in 1 min or less, on atmospheric science research spanning different subdisciplines and evaluates the strengths and weaknesses of the use of rapid-scan radars. In particular, a significant body of literature has accumulated for tornado and severe thunderstorm research and forecasting applications, in addition to a growing number of studies of convection. Convection research has benefited substantially from more synchronous vertical views, but could benefit more substantially by leveraging multi-Doppler wind retrievals and complementary in situ and remote sensors. In addition, several years of forecast evaluation studies are synthesized from radar testbed experiments, and the benefits of assimilating rapid-scan radar observations are analyzed. Although the current body of literature reflects the considerable utility of rapid-scan radars to science research, a weakness is that limited advancements in understanding of the physical mechanisms behind observed features have been enabled. There is considerable opportunity to bridge the gap in physical understanding with the current technology using coordinated efforts to include rapid-scan radars in field campaigns and expanding the breadth of meteorological phenomena studied. Significance StatementRecently developed rapid-scan radar technologies, capable of collecting volumetric (i.e., three-dimensional) measurements in 10–60 s, have improved temporal sampling of weather phenomena. This review examines the impact of these radar observations from the past two decades on science research and emerging operational capabilities. Substantial breadth and impact of research is evident for tornado research and forecasting applications, in addition to documentation of other rapidly evolving phenomena associated with deep convection, such as tornadoes, hail, lightning, and tropical cyclones. This review identifies the strengths and weaknesses of how these radars have been used in scientific research to inform future studies, emerging from the increasing availability and capability of rapid-scan radars. In addition, this review synthesizes research that can benefit future operational radar decisions. 
    more » « less
  5. Abstract Polarimetric radar data from the WSR-88D network are used to examine the evolution of various polarimetric precursor signatures to tornado dissipation within a sample of 36 supercell storms. These signatures include an increase in bulk hook echo median raindrop size, a decrease in midlevel differential radar reflectivity factor (ZDR) column area, a decrease in the magnitude of theZDRarc, an increase in the area of low-level large hail, and a decrease in the orientation angle of the vector separating low-levelZDRand specific differential phase (KDP) maxima. Only supercells that produced “long-duration” tornadoes (with at least four consecutive volumes of WSR-88D data) are investigated, so that signatures can be sufficiently tracked in time, and novel algorithms are used to isolate each storm-scale process. During the time leading up to tornado dissipation, we find that hook echo median drop size (D0) and medianZDRremain relatively constant, but hook echo medianKDPand estimated number concentration (NT) increase. TheZDRarc maximum magnitude andZDR–KDPseparation orientation angles are observed to decrease in most dissipation cases. Neither the area of large hail nor theZDRcolumn area exhibit strong signals leading up to tornado dissipation. Finally, combinations of storm-scale behaviors and TVS behaviors occur most frequently just prior to tornado dissipation, but also are common 15–20 min prior to dissipation. The results from this study provide evidence that nowcasting tornado dissipation using dual-polarization radar may be possible when combined with TVS monitoring, subject to important caveats. 
    more » « less