skip to main content


Title: Calibration methods for a dual-wavelength interferometer system
Multiple wavelength interferometry has long been considered an option for the measurement of large aspheric slope departures. In particular, a synthetic wavelength offers a variety of approaches by which large phase excursions can be unwrapped. Using multiple wavelengths can create collimation and magnification mismatch errors between the individual wavelengths that arise during beam expansion and propagation. Here, we present and analyze alignment and calibration methods for a dual-wavelength interferometer that can significantly reduce both misalignment errors and chromatic aberrations in the system. To correct for misalignment, a general method is described for the alignment of a dual-wavelength interferometer, including the alignment of lasers, beam expanders, beam splitters for combining beams and for compensating errors in the reference surface, and the fringe imaging system. A Fourier transform test at the detector surface was conducted to validate that there is essentially no magnification difference between two wavelengths resulting from misalignment of optical system. For the chromatic aberration introduced by the optical elements in the system, a ray-trace model of the interferometer has been established, to simulate the chromatic effect that optical elements will have on the measurement results. As an experimental test, we examine an off-axis spherical mirror in a non-null condition using a highly aliased interferogram. The above alignment methods and the results are analyzed based on the simulated system errors. Using this method, we demonstrate a measured surface profile of deviation of λ/25 which is comparable to a direct measurement profile of the surface on axis using a Fizeau interferometer.  more » « less
Award ID(s):
1653510
NSF-PAR ID:
10087129
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proc. SPIE 10747, Optical System Alignment, Tolerancing, and Verification XII
Volume:
10747
Page Range / eLocation ID:
6
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Displacement measuring interferometry is a crucial component in metrology applications. In this paper, we propose a fiber-based two-wavelength heterodyne interferometer as a compact and highly sensitive displacement sensor that can be used in inertial sensing applications. In the proposed design, two individual heterodyne interferometers are constructed using two different wavelengths, 1064 nm and 1055 nm; one of which measures the target displacement and the other monitors the common-mode noise in the fiber system. A narrow-bandwidth spectral filter separates the beam paths of the two interferometers, which are highly common and provide a high rejection ratio to the environmental noise. The preliminary test shows a sensitivity floor of7.5pm/Hzat 1 Hz when tested in an enclosed chamber. We also investigated the effects of periodic errors due to imperfect spectral separation on the displacement measurement and propose algorithms to mitigate these effects.

     
    more » « less
  2. Abstract This paper presents a novel method to eliminate cosine error in precision concave and convex surface measurement by integrating a displacement probe in a precision spindle. Cosine error in surface profile measurement comes from an angular misalignment between the measurement axis and the axis of motion and negatively affects the measurement accuracy, especially in optical surface measurements. A corrective multiplier can solve this problem for spherical surface measurement, but cosine error cannot be eliminated in the case of complex optical surface measurement because current tools do not measure such surfaces along the direction normal to the measurement plane. Because the displacement probe is placed on the spindle axis, the spindle error motion will affect the shape precision and surface roughness measurement of optical components such as mirrors and lenses, and the displacement probe will measure a combination of the spindle error motion and the geometry of optical surfaces. Here, the one-dimensional concave, convex, and hollow measurement targets were used, and cosine error was fundamentally eliminated by aligning the probe on the spindle always normal to the measured surface, and compensation was made for the aerostatic bearing spindle rotational error obtained by the reversal method. The results show that this proposed measurement method cannot only eliminate cosine error but also scan the large area quickly and conveniently. In addition, measurement uncertainty and further consideration for future work were discussed. 
    more » « less
  3. This paper presents a novel method to eliminate cosine error in precision concave and convex surface measurement by integrating a displacement probe in a precision spindle. Cosine error in surface profile measurement comes from an angular misalignment between the measurement axis and the axis of motion and negatively affects the measurement accuracy, especially in optical surface measurements. A corrective multiplier can solve this problem for spherical surface measurement, but cosine error cannot be eliminated in the case of complex optical surface measurement because current tools do not measure such surfaces along the direction normal to the measurement plane. Because the displacement probe is placed on the spindle axis, the spindle error motion will affect the shape precision and surface roughness measurement of optical components such as mirrors and lenses, and the displacement probe will measure a combination of the spindle error motion and the geometry of optical surfaces. Here, the one-dimensional concave, convex, and hollow measurement targets were used, and cosine error was fundamentally eliminated by aligning the probe on the spindle always normal to the measured surface, and compensation was made for the aerostatic bearing spindle rotational error obtained by the reversal method. The results show that this proposed measurement method cannot only eliminate cosine error but also scan the large area quickly and conveniently. In addition, measurement uncertainty and further consideration for future work were discussed. 
    more » « less
  4. Context. Asymptotic giant branch (AGB) stars are cool luminous evolved stars that are well observable across the Galaxy and populating Gaia data. They have complex stellar surface dynamics, which amplifies the uncertainties on stellar parameters and distances. Aims. On the AGB star CL Lac, it has been shown that the convection-related variability accounts for a substantial part of the Gaia DR2 parallax error. We observed this star with the MIRC-X beam combiner installed at the CHARA interferometer to detect the presence of stellar surface inhomogeneities. Methods. We performed the reconstruction of aperture synthesis images from the interferometric observations at different wavelengths. Then, we used 3D radiative hydrodynamics (RHD) simulations of stellar convection with CO5BOLD and the post-processing radiative transfer code O PTIM 3D to compute intensity maps in the spectral channels of MIRC-X observations. Then, we determined the stellar radius using the average 3D intensity profile and, finally, compared the 3D synthetic maps to the reconstructed ones focusing on matching the intensity contrast, the morphology of stellar surface structures, and the photocentre position at two different spectral channels, 1.52 and 1.70 μ m, simultaneously. Results. We measured the apparent diameter of CL Lac at two wavelengths (3.299 ± 0.005 mas and 3.053 ± 0.006 mas at 1.52 and 1.70 μ m, respectively) and recovered the radius ( R = 307 ± 41 and R = 284 ± 38 R ⊙ ) using a Gaia parallax. In addition to this, the reconstructed images are characterised by the presence of a brighter area that largely affects the position of the photocentre. The comparison with 3D simulation shows good agreement with the observations both in terms of contrast and surface structure morphology, meaning that our model is adequate for explaining the observed inhomogenities. Conclusions. This work confirms the presence of convection-related surface structures on an AGB star of Gaia DR2. Our result will help us to take a step forward in exploiting Gaia measurement uncertainties to extract the fundamental properties of AGB stars using appropriate RHD simulations. 
    more » « less
  5. Abstract

    Direct laser writing (DLW) has been shown to render 3D polymeric optical components, including lenses, beam expanders, and mirrors, with submicrometer precision. However, these printed structures are limited to the refractive index and dispersive properties of the photopolymer. Here, we present the subsurface controllable refractive index via beam exposure (SCRIBE) method, a lithographic approach that enables the tuning of the refractive index over a range of greater than 0.3 by performing DLW inside photoresist-filled nanoporous silicon and silica scaffolds. Adjusting the laser exposure during printing enables 3D submicron control of the polymer infilling and thus the refractive index and chromatic dispersion. Combining SCRIBE’s unprecedented index range and 3D writing accuracy has realized the world’s smallest (15 µm diameter) spherical Luneburg lens operating at visible wavelengths. SCRIBE’s ability to tune the chromatic dispersion alongside the refractive index was leveraged to render achromatic doublets in a single printing step, eliminating the need for multiple photoresins and writing sequences. SCRIBE also has the potential to form multicomponent optics by cascading optical elements within a scaffold. As a demonstration, stacked focusing structures that generate photonic nanojets were fabricated inside porous silicon. Finally, an all-pass ring resonator was coupled to a subsurface 3D waveguide. The measured quality factor of 4600 at 1550 nm suggests the possibility of compact photonic systems with optical interconnects that traverse multiple planes. SCRIBE is uniquely suited for constructing such photonic integrated circuits due to its ability to integrate multiple optical components, including lenses and waveguides, without additional printed supports.

     
    more » « less