skip to main content


Title: Direct laser writing of volumetric gradient index lenses and waveguides
Abstract

Direct laser writing (DLW) has been shown to render 3D polymeric optical components, including lenses, beam expanders, and mirrors, with submicrometer precision. However, these printed structures are limited to the refractive index and dispersive properties of the photopolymer. Here, we present the subsurface controllable refractive index via beam exposure (SCRIBE) method, a lithographic approach that enables the tuning of the refractive index over a range of greater than 0.3 by performing DLW inside photoresist-filled nanoporous silicon and silica scaffolds. Adjusting the laser exposure during printing enables 3D submicron control of the polymer infilling and thus the refractive index and chromatic dispersion. Combining SCRIBE’s unprecedented index range and 3D writing accuracy has realized the world’s smallest (15 µm diameter) spherical Luneburg lens operating at visible wavelengths. SCRIBE’s ability to tune the chromatic dispersion alongside the refractive index was leveraged to render achromatic doublets in a single printing step, eliminating the need for multiple photoresins and writing sequences. SCRIBE also has the potential to form multicomponent optics by cascading optical elements within a scaffold. As a demonstration, stacked focusing structures that generate photonic nanojets were fabricated inside porous silicon. Finally, an all-pass ring resonator was coupled to a subsurface 3D waveguide. The measured quality factor of 4600 at 1550 nm suggests the possibility of compact photonic systems with optical interconnects that traverse multiple planes. SCRIBE is uniquely suited for constructing such photonic integrated circuits due to its ability to integrate multiple optical components, including lenses and waveguides, without additional printed supports.

 
more » « less
Award ID(s):
1935289
NSF-PAR ID:
10204147
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Light: Science & Applications
Volume:
9
Issue:
1
ISSN:
2047-7538
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Additive manufacturing systems that can arbitrarily deposit multiple materials into precise, 3D spaces spanning the micro‐ to nanoscale are enabling novel structures with useful thermal, electrical, and optical properties. In this companion paper set, electrohydrodynamic jet (e‐jet) printing is investigated for its ability in depositing multimaterial, multilayer films with microscale spatial resolution and nanoscale thickness control, with a demonstration of this capability in creating 1D photonic crystals (1DPCs) with response near the visible regime. Transfer matrix simulations are used to evaluate different material classes for use in a printed 1DPC, and commercially available photopolymers with varying refractive indices (n= 1.35 to 1.70) are selected based on their relative high index contrast and fast curing times. E‐jet printing is then used to experimentally demonstrate pixelated 1DPCs with individual layer thicknesses between 80 and 200 nm, square pixels smaller than 40 µm across, with surface roughness less than 20 nm. The reflectance characteristics of the printed 1DPCs are measured using spatially selective microspectroscopy and correlated to the transfer matrix simulations. These results are an important step toward enabling cost‐effective, custom‐fabrication of advanced imaging devices or photonic crystal sensing platforms.

     
    more » « less
  2. Direct laser writing (DLW) is a three-dimensional (3D) manufacturing technology that offers vast architectural control at submicron scales, yet remains limited in cases that demand microstructures comprising more than one material. Here we present an accessible microfluidic multi-material DLW (μFMM-DLW) strategy that enables 3D nanostructured components to be printed with average material registration accuracies of 100 ± 70 nm (Δ X ) and 190 ± 170 nm (Δ Y ) – a significant improvement versus conventional multi-material DLW methods. Results for printing 3D microstructures with up to five materials suggest that μFMM-DLW can be utilized in applications that demand geometrically complex, multi-material microsystems, such as for photonics, meta-materials, and 3D cell biology. 
    more » « less
  3. Abstract

    One of the most significant developments in life sciences—the discovery of bacteria and protists—was accomplished by Antoni van Leeuwenhoek in the 17thcentury using a single ball lens microscope. It is shown that the full potential of single lens designs can be realized in a contact mode of imaging by ball lenses with a refractive index of n≈ 2, suitable for developing compact cellphone‐based microscopes. The quality of imaging is comparable to basic compound microscopes, but with a narrower field‐of‐view, and is demonstrated for various biomedical samples. The maximal magnification (M > 50) with the highest resolution (≈0.66 µm atλ= 589 nm) is achieved for imaging of nanoplasmonic structures by ball lenses made from LASFN35 glass, the index of which is tuned nearn =2 using chromatic dispersion. Due to limitations of geometrical optics, the imaging theory is developed based on an exact numerical solution of the Maxwell equations, including spherical aberration and the nearfield coupling of a point source. The modeling is performed using multiscale analysis: from the field propagation inside ball lenses with diameters 30 < D/λ < 4000 to the formation of the diffracted field at distances of ≈105λ. It is shown that such imaging enables the transition from pixel‐ to diffraction‐limited resolution in cellphone microscopy.

     
    more » « less
  4. Abstract

    Direct laser writing (DLW) is a three-dimensional (3D) manufacturing technology that offers significant geometric versatility at submicron length scales. Although these characteristics hold promise for fields including organ modeling and microfluidic processing, difficulties associated with facilitating the macro-to-micro interfaces required for fluid delivery have limited the utility of DLW for such applications. To overcome this issue, here we report anin-situDLW (isDLW) strategy for creating 3D nanostructured features directly inside of—and notably, fully sealed to—sol-gel-coated elastomeric microchannels. In particular, we investigate the role of microchannel geometry (e.g., cross-sectional shape and size) in the sealing performance ofisDLW-printed structures. Experiments revealed that increasing the outward tapering of microchannel sidewalls improved fluidic sealing integrity for channel heights ranging from 10μm to 100μm, which suggests that conventional microchannel fabrication approaches are poorly suited forisDLW. As a demonstrative example, we employedisDLW to 3D print a microfluidic helical coil spring diode and observed improved flow rectification performance at higher pressures—an indication of effective structure-to-channel sealing. We envision that the ability to readily integrate 3D nanostructured fluidic motifs with the entire luminal surface of elastomeric channels will open new avenues for emerging applications in areas such as soft microrobotics and biofluidic microsystems.

     
    more » « less
  5. In situ direct laser writing ( is DLW) strategies that facilitate the printing of three-dimensional (3D) nanostructured components directly inside of, and fully sealed to, enclosed microchannels are uniquely suited for manufacturing geometrically complex microfluidic technologies. Recent efforts have demonstrated the benefits of using micromolding and bonding protocols for is DLW; however, the reliance on polydimethylsiloxane (PDMS) leads to limited fluidic sealing ( e.g. , operational pressures <50–75 kPa) and poor compatibility with standard organic solvent-based developers. To bypass these issues, here we explore the use of cyclic olefin polymer (COP) as an enabling microchannel material for is DLW by investigating three fundamental classes of microfluidic systems corresponding to increasing degrees of sophistication: (i) “2.5D” functionally static fluidic barriers (10–100 μm in height), which supported uncompromised structure-to-channel sealing under applied input pressures of up to 500 kPa; (ii) 3D static interwoven microvessel-inspired structures (inner diameters < 10 μm) that exhibited effective isolation of distinct fluorescently labelled microfluidic flow streams; and (iii) 3D dynamically actuated microfluidic transistors, which comprised bellowed sealing elements (wall thickness = 500 nm) that could be actively deformed via an applied gate pressure to fully obstruct source-to-drain fluid flow. In combination, these results suggest that COP-based is DLW offers a promising pathway to wide-ranging fluidic applications that demand significant architectural versatility at submicron scales with invariable sealing integrity, such as for biomimetic organ-on-a-chip systems and integrated microfluidic circuits. 
    more » « less