skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A dual-functional wave-power plant for wave-energy extraction and shore protection: A wave-flume study
Award ID(s):
1706938
PAR ID:
10087134
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Applied Energy
Volume:
229
Issue:
C
ISSN:
0306-2619
Page Range / eLocation ID:
963 to 976
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper discusses wave-by-wave near-optimal control of a wave energy device in irregular waves. A deterministic propagation model is used to predict the wave elevation several seconds into the future at the device location. Two prediction approaches are considered. The first is based on a time series being measured over an advancing time window at a particular up-wave location. This approach is here utilized in long-crested irregular waves. The second approach uses successive snapshots of wave elevation measurements over an up-wave area. This approach is found more convenient for multi-directional waves, and is here applied in a bi-directional wave irregular wave field. A small, heaving vertical cylinder reacting against a deeply submerged (i.e. assumed to undergo negligible oscillations) mass is studied under wave-by-wave control. The non-causal feedforward control force required for optimum velocity under a swept-volume constraint is based on the past, current, and predicted wave elevation at the device. Results for time-averaged converted power and displacement/force maxima are obtained for a range of irregular wave conditions. Also presented in addition are energy conversion results with a feedback-alone control force using a multi-resonant control technique. 
    more » « less
  2. null (Ed.)
  3. Eberly, Jan; Romer, David (Ed.)
    In the spring of 2020, the initial surge of COVID-19 infections and deaths was flattened using a combination of economic shutdowns and noneconomic non-pharmaceutical interventions (NPIs). The possibility of a second wave of infections and deaths raises the question of what interventions can be used to significantly reduce deaths while supporting, not preventing, economic recovery. We use a five-age epidemiological model combined with sixty-six-sector economic accounting to examine policies to avert and to respond to a second wave. We find that a second round of economic shutdowns alone are neither sufficient nor necessary to avert or quell a second wave. In contrast, noneconomic NPIs, such as wearing masks and personal distancing, increasing testing and quarantine, reintroducing restrictions on social and recreational gatherings, and enhancing protections for the elderly together can mitigate a second wave while leaving room for an economic recovery. 
    more » « less
  4. null (Ed.)
    In the presence of inertia-gravity waves, the geostrophic and hydrostatic balance that characterises the slow dynamics of rapidly rotating, strongly stratified flows holds in a time-averaged sense and applies to the Lagrangian-mean velocity and buoyancy. We give an elementary derivation of this wave-averaged balance and illustrate its accuracy in numerical solutions of the three-dimensional Boussinesq equations, using a simple configuration in which vertically planar near-inertial waves interact with a barotropic anticylonic vortex. We further use the conservation of the wave-averaged potential vorticity to predict the change in the barotropic vortex induced by the waves. 
    more » « less