skip to main content


Title: SocialAnnotator: Annotator Selection by Exploiting Social Relationships in Activity Recognition
Precise and eloquent label information is fundamental for interpreting the underlying data distributions distinctively and training of supervised and semi-supervised learning models adequately. But obtaining large amount of labeled data demands substantial manual effort. This obligation can be mitigated by acquiring labels of most informative data instances using Active Learning. However labels received from humans are not always reliable and poses the risk of introducing noisy class labels which will degrade the efficacy of a model instead of its improvement. In this paper, we address the problem of annotating sensor data instances of various Activities of Daily Living (ADLs) in smart home context. We exploit the interactions between the users and annotators in terms of relationships spanning across spatial and temporal space which accounts for an activity as well. We propose a novel annotator selection model SocialAnnotator which exploits the interactions between the users and annotators and rank the annotators based on their level of correspondence. We also introduce a novel approach to measure this correspondence distance using the spatial and temporal information of interactions, type of the relationships and activities. We validate our proposed SocialAnnotator framework in smart environments achieving ≈ 84% statistical confidence in data annotation  more » « less
Award ID(s):
1750936
NSF-PAR ID:
10087466
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of the IEEE AAAI 2018 Fall Symposium, Oct 2018
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Machine learning models are bounded by the credibility of ground truth data used for both training and testing. Regardless of the problem domain, this ground truth annotation is objectively manual and tedious as it needs considerable amount of human intervention. With the advent of Active Learning with multiple annotators, the burden can be somewhat mitigated by actively acquiring labels of most informative data instances. However, multiple annotators with varying degrees of expertise poses new set of challenges in terms of quality of the label received and availability of the annotator. Due to limited amount of ground truth information addressing the variabilities of Activity of Daily Living (ADLs), activity recognition models using wearable and mobile devices are still not robust enough for real-world deployment. In this paper, we propose an active learning combined deep model which updates its network parameters based on the optimization of a joint loss function. We then propose a novel annotator selection model by exploiting the relationships among the users while considering their heterogeneity with respect to their expertise, physical and spatial context. Our proposed model leverages model-free deep reinforcement learning in a partially observable environment setting to capture the actionreward interaction among multiple annotators. Our experiments in real-world settings exhibit that our active deep model converges to optimal accuracy with fewer labeled instances and achieves 8% improvement in accuracy in fewer iterations. 
    more » « less
  2. We explore the effect of auxiliary labels in improving the classification accuracy of wearable sensor-based human activity recognition (HAR) systems, which are primarily trained with the supervision of the activity labels (e.g. running, walking, jumping). Supplemental meta-data are often available during the data collection process such as body positions of the wearable sensors, subjects' demographic information (e.g. gender, age), and the type of wearable used (e.g. smartphone, smart-watch). This information, while not directly related to the activity classification task, can nonetheless provide auxiliary supervision and has the potential to significantly improve the HAR accuracy by providing extra guidance on how to handle the introduced sample heterogeneity from the change in domains (i.e positions, persons, or sensors), especially in the presence of limited activity labels. However, integrating such meta-data information in the classification pipeline is non-trivial - (i) the complex interaction between the activity and domain label space is hard to capture with a simple multi-task and/or adversarial learning setup, (ii) meta-data and activity labels might not be simultaneously available for all collected samples. To address these issues, we propose a novel framework Conditional Domain Embeddings (CoDEm). From the available unlabeled raw samples and their domain meta-data, we first learn a set of domain embeddings using a contrastive learning methodology to handle inter-domain variability and inter-domain similarity. To classify the activities, CoDEm then learns the label embeddings in a contrastive fashion, conditioned on domain embeddings with a novel attention mechanism, enforcing the model to learn the complex domain-activity relationships. We extensively evaluate CoDEm in three benchmark datasets against a number of multi-task and adversarial learning baselines and achieve state-of-the-art performance in each avenue. 
    more » « less
  3. This work introduces Wearable deep learning (WearableDL) that is a unifying conceptual architecture inspired by the human nervous system, offering the convergence of deep learning (DL), Internet-of-things (IoT), and wearable technologies (WT) as follows: (1) the brain, the core of the central nervous system, represents deep learning for cloud computing and big data processing. (2) The spinal cord (a part of CNS connected to the brain) represents Internet-of-things for fog computing and big data flow/transfer. (3) Peripheral sensory and motor nerves (components of the peripheral nervous system (PNS)) represent wearable technologies as edge devices for big data collection. In recent times, wearable IoT devices have enabled the streaming of big data from smart wearables (e.g., smartphones, smartwatches, smart clothings, and personalized gadgets) to the cloud servers. Now, the ultimate challenges are (1) how to analyze the collected wearable big data without any background information and also without any labels representing the underlying activity; and (2) how to recognize the spatial/temporal patterns in this unstructured big data for helping end-users in decision making process, e.g., medical diagnosis, rehabilitation efficiency, and/or sports performance. Deep learning (DL) has recently gained popularity due to its ability to (1) scale to the big data size (scalability); (2) learn the feature engineering by itself (no manual feature extraction or hand-crafted features) in an end-to-end fashion; and (3) offer accuracy or precision in learning raw unlabeled/labeled (unsupervised/supervised) data. In order to understand the current state-of-the-art, we systematically reviewed over 100 similar and recently published scientific works on the development of DL approaches for wearable and person-centered technologies. The review supports and strengthens the proposed bioinspired architecture of WearableDL. This article eventually develops an outlook and provides insightful suggestions for WearableDL and its application in the field of big data analytics. 
    more » « less
  4. In the era of big data, data-driven based classification has become an essential method in smart manufacturing to guide production and optimize inspection. The industrial data obtained in practice is usually time-series data collected by soft sensors, which are highly nonlinear, nonstationary, imbalanced, and noisy. Most existing soft-sensing machine learning models focus on capturing either intra-series temporal dependencies or pre-defined inter-series correlations, while ignoring the correlation between labels as each instance is associated with multiple labels simultaneously. In this paper, we propose a novel graph based soft-sensing neural network (GraSSNet) for multivariate time-series classification of noisy and highly-imbalanced soft-sensing data. The proposed GraSSNet is able to 1) capture the inter-series and intra-series dependencies jointly in the spectral domain; 2) exploit the label correlations by superimposing label graph that built from statistical co-occurrence information; 3) learn features with attention mechanism from both textual and numerical domain; and 4) leverage unlabeled data and mitigate data imbalance by semi-supervised learning. Comparative studies with other commonly used classifiers are carried out on Seagate soft sensing data, and the experimental results validate the competitive performance of our proposed method. 
    more » « less
  5. Self-supervised learning of graph neural networks (GNN) is in great need because of the widespread label scarcity issue in real-world graph/network data. Graph contrastive learning (GCL), by training GNNs to maximize the correspondence between the representations of the same graph in its different augmented forms, may yield robust and transferable GNNs even without using labels. However, GNNs trained by traditional GCL often risk capturing redundant graph features and thus may be brittle and provide sub-par performance in downstream tasks. Here, we propose a novel principle, termed adversarial-GCL (\textit{AD-GCL}), which enables GNNs to avoid capturing redundant information during the training by optimizing adversarial graph augmentation strategies used in GCL. We pair AD-GCL with theoretical explanations and design a practical instantiation based on trainable edge-dropping graph augmentation. We experimentally validate AD-GCL by comparing with the state-of-the-art GCL methods and achieve performance gains of up-to~14\% in unsupervised, ~6\% in transfer and~3\% in semi-supervised learning settings overall with 18 different benchmark datasets for the tasks of molecule property regression and classification, and social network classification. 
    more » « less