skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Spherically symmetric random permutations
We consider random permutations which are spherically symmetric with respect to a metric on the symmetric groupSnand are consistent asnvaries. The extreme infinitely spherically symmetric permutation‐valued processes are identified for the Hamming, Kendall‐tau and Cayley metrics. The proofs in all three cases are based on a unified approach through stochastic monotonicity.  more » « less
Award ID(s):
1664619
PAR ID:
10087672
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Random Structures & Algorithms
Volume:
55
Issue:
2
ISSN:
1042-9832
Page Range / eLocation ID:
p. 342-355
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Two stereoisomers, one C2 symmetric and one Cs symmetric, of saturated N-heterocyclic carbenes (NHCs) were placed on gold films and they demonstrate different reactivity. 
    more » « less
  2. Abstract We use elastic and inelastic neutron scattering (INS) to study the antiferromagnetic (AF) phase transitions and spin excitations in the two-dimensional (2D) zig-zag antiferromagnet FePSe3. By determining the magnetic order parameter across the AF phase transition, we conclude that the AF phase transition in FePSe3is first-order in nature. In addition, our INS measurements reveal that the spin waves in the AF ordered state have a large easy-axis magnetic anisotropy gap, consistent with an Ising Hamiltonian, and possible biquadratic magnetic exchange interactions. On warming acrossTN, we find that dispersive spin excitations associated with three-fold rotational symmetric AF fluctuations change into FM spin fluctuations aboveTN. These results suggest that the first-order AF phase transition in FePSe3may arise from the competition betweenC3symmetric AF andC1symmetric FM spin fluctuations aroundTN, in place of a conventional second-order AF phase transition. 
    more » « less
  3. Abstract We continue our work on the study of spherically symmetric loop quantum gravity coupled to two spherically symmetric scalar fields, one which acts as a clock. As a consequence of the presence of the latter, we can define a true Hamiltonian for the theory. The spherically symmetric context allows to carry out precise detailed calculations. Here we study the theory for regions of large values of the radial coordinate. This allows us to define in detail the vacuum of the theory and study its quantum states, yielding a quantum field theory on a quantum space time that makes contact with the usual treatment on classical space times. 
    more » « less
  4. Abstract We fit the mass and radial profile of the Orphan–Chenab Stream’s (OCS) dwarf-galaxy progenitor by using turnoff stars in the Sloan Digital Sky Survey and the Dark Energy Camera to constrainN-body simulations of the OCS progenitor falling into the Milky Way on the 1.5 PetaFLOPS MilkyWay@home distributed supercomputer. We infer the internal structure of the OCS’s progenitor under the assumption that it was a spherically symmetric dwarf galaxy composed of a stellar system embedded in an extended dark matter halo. We optimize the evolution time, the baryonic and dark matter scale radii, and the baryonic and dark matter masses of the progenitor using a differential evolution algorithm. The likelihood score for each set of parameters is determined by comparing the simulated tidal stream to the angular distribution of OCS stars observed in the sky. We fit the total mass of the OCS’s progenitor to (2.0 ± 0.3) × 107Mwith a mass-to-light ratio ofγ= 73.5 ± 10.6 and (1.1 ± 0.2) × 106Mwithin 300 pc of its center. Within the progenitor’s half-light radius, we estimate a total mass of (4.0 ± 1.0) × 105M. We also fit the current sky position of the progenitor’s remnant to be (α,δ) = ((166.0 ± 0.9)°, (−11.1 ± 2.5)°) and show that it is gravitationally unbound at the present time. The measured progenitor mass is on the low end of previous measurements and, if confirmed, lowers the mass range of ultrafaint dwarf galaxies. Our optimization assumes a fixed Milky Way potential, OCS orbit, and radial profile for the progenitor, ignoring the impact of the Large Magellanic Cloud. 
    more » « less
  5. The long-term relaxation of rotating, spherically symmetric globular clusters is investigated through an extension of the orbit-averaged Chandrasekhar non-resonant formalism. A comparison is made with the long-term evolution of the distribution function in action space, measured from averages of sets ofN-body simulations up to core collapse. The impact of rotation on in-plane relaxation is found to be weak. In addition, we observe a clear match between theoretical predictions andN-body measurements. For the class of rotating models considered, we find no strong gravo-gyro catastrophe accelerating core collapse. Both kinetic theory and simulations predict a reshuffling of orbital inclinations from overpopulated regions to underpopulated ones. This trend accelerates as the amount of rotation is increased. Yet, for orbits closer to the rotational plane, the non-resonant prediction does not reproduce numerical measurements. We argue that this mismatch stems from these orbits’ coherent interactions, which are not captured by the non-resonant formalism that only addresses local deflections. 
    more » « less