skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Non-resonant relaxation of rotating globular clusters
The long-term relaxation of rotating, spherically symmetric globular clusters is investigated through an extension of the orbit-averaged Chandrasekhar non-resonant formalism. A comparison is made with the long-term evolution of the distribution function in action space, measured from averages of sets ofN-body simulations up to core collapse. The impact of rotation on in-plane relaxation is found to be weak. In addition, we observe a clear match between theoretical predictions andN-body measurements. For the class of rotating models considered, we find no strong gravo-gyro catastrophe accelerating core collapse. Both kinetic theory and simulations predict a reshuffling of orbital inclinations from overpopulated regions to underpopulated ones. This trend accelerates as the amount of rotation is increased. Yet, for orbits closer to the rotational plane, the non-resonant prediction does not reproduce numerical measurements. We argue that this mismatch stems from these orbits’ coherent interactions, which are not captured by the non-resonant formalism that only addresses local deflections.  more » « less
Award ID(s):
2310362
PAR ID:
10556482
Author(s) / Creator(s):
; ;
Publisher / Repository:
EDP Publisher
Date Published:
Journal Name:
Astronomy & Astrophysics
Volume:
689
ISSN:
0004-6361
Page Range / eLocation ID:
A126
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Both the core collapse of rotating massive stars, and the coalescence of neutron star (NS) binaries result in the formation of a hot, differentially rotating NS remnant. The timescales over which differential rotation is removed by internal angular-momentum transport processes (viscosity) have key implications for the remnant’s long-term stability and the NS equation of state (EOS). Guided by a nonrotating model of a cooling proto-NS, we estimate the dominant sources of viscosity using an externally imposed angular-velocity profile Ω(r). Although the magneto-rotational instability provides the dominant source of effective viscosity at large radii, convection and/or the Tayler–Spruit dynamo dominate in the core of merger remnants wheredΩ/dr≥ 0. Furthermore, the viscous timescale in the remnant core is sufficiently short that solid-body rotation will be enforced faster than matter is accreted from rotationally supported outer layers. Guided by these results, we develop a toy model for how the merger remnant core grows in mass and angular momentum due to accretion. We find that merger remnants with sufficiently massive and slowly rotating initial cores may collapse to black holes via envelope accretion, even when the total remnant mass is less than the usually considered threshold ≈1.2MTOVfor forming a stable solid-body rotating NS remnant (whereMTOVis the maximum nonrotating NS mass supported by the EOS). This qualitatively new picture of the post-merger remnant evolution and stability criterion has important implications for the expected electromagnetic counterparts from binary NS mergers and for multimessenger constraints on the NS EOS. 
    more » « less
  2. Abstract There is an intriguing and growing population of Neptune-sized planets with stellar obliquities near ∼90°. One previously proposed formation pathway is a disk-driven resonance, which can take place at the end stages of planet formation in a system containing an inner Neptune, outer cold Jupiter, and protoplanetary disk. This mechanism occurs within the first ∼10 Myr, but most of the polar Neptunes we see today are ∼Gyr old. Up until now, there has not been an extensive analysis of whether the polar orbits are stable over ∼Gyr timescales. Tidal realignment mechanisms are known to operate in other systems, and if they are active here, this would cause theoretical tension with a primordial misalignment story. In this paper, we explore the effects of tidal evolution on the disk-driven resonance theory. We use bothN-body and secular simulations to study tidal effects on both the initial resonant encounter and long-term evolution. We find that the polar orbits are remarkably stable on ∼Gyr timescales. Inclination damping does not occur for the polar cases, although we do identify subpolar cases where it is important. We consider two case study polar Neptunes, WASP-107 b and HAT-P-11 b, and study them in the context of this theory, finding consistency with present-day properties if their tidal quality factors areQ≳ 104andQ≳ 105, respectively. 
    more » « less
  3. Abstract Orbital evolution is a critical process that sculpts planetary systems, particularly during their early stages where planet–disk interactions are expected to lead to the formation of resonant chains. Despite the theoretically expected prominence of such configurations, they are scarcely observed among long-period giant exoplanets. This disparity suggests an evolutionary sequence wherein giant planet systems originate in compact multiresonant configurations, but subsequently become unstable, eventually relaxing to wider orbits—a phenomenon mirrored in our own solar system’s early history. In this work, we present a suite ofN-body simulations that model the instability-driven evolution of giant planet systems, originating from resonant initial conditions, through phases of disk dispersal and beyond. By comparing the period ratio and normalized angular momentum distributions of our synthetic aggregate of systems with the observational census of long-period Jovian planets, we derive constraints on the expected rate of orbital migration, the efficiency of gas-driven eccentricity damping, and typical initial multiplicity. Our findings reveal a distinct inclination toward densely packed initial conditions, weak damping, and high giant planet multiplicities. Furthermore, our models indicate that resonant chain origins do not facilitate the formation of Hot Jupiters via the coplanar high-eccentricity pathway at rates high enough to explain their observed prevalence. 
    more » « less
  4. Abstract Relativistic jets from a Kerr black hole (BH) following the core collapse of a massive star (“collapsar”) is a leading model for gamma-ray bursts (GRBs). However, the two key ingredients for a Blandford–Znajek-powered jet—rapid rotation and a strong magnetic field—seem mutually exclusive. Strong fields in the progenitor star’s core transport angular momentum outward more quickly, slowing down the core before collapse. Through innovative multidisciplinary modeling, we first use MESA stellar evolution models followed to core collapse to explicitly show that the small length scale of the instabilities—likely responsible for angular momentum transport in the core (e.g., Tayler–Spruit)—results in a lownetmagnetic flux fed to the BH horizon, far too small to power GRB jets. Instead, we propose a novel scenario in which collapsar BHs acquire their magnetic “hair” from their progenitor proto–neutron star (PNS), which is likely highly magnetized from an internal dynamo. We evaluate the conditions for the BH accretion disk to pin the PNS magnetosphere to its horizon immediately after the collapse. Our results show that the PNS spin-down energy released before collapse matches the kinetic energy of Type Ic-BL supernovae, while the nascent BH’s spin and magnetic flux produce jets consistent with observed GRB characteristics. We map our MESA models to 3D general-relativistic magnetohydrodynamic simulations and confirm that accretion disks confine the strong magnetic flux initiated near a rotating BH, enabling the launch of successful GRB jets, whereas a slower-spinning BH or one without a disk fails to do so. 
    more » « less
  5. Abstract We describe the public release of the Cluster Monte Carlo (CMC) code, a parallel, star-by-starN-body code for modeling dense star clusters.CMCtreats collisional stellar dynamics using Hénon’s method, where the cumulative effect of many two-body encounters is statistically reproduced as a single effective encounter between nearest-neighbor particles on a relaxation timescale. The star-by-star approach allows for the inclusion of additional physics, including strong gravitational three- and four-body encounters, two-body tidal and gravitational-wave captures, mass loss in arbitrary galactic tidal fields, and stellar evolution for both single and binary stars. The public release ofCMCis pinned directly to theCOSMICpopulation synthesis code, allowing dynamical star cluster simulations and population synthesis studies to be performed using identical assumptions about the stellar physics and initial conditions. As a demonstration, we present two examples of star cluster modeling: first, we perform the largest (N= 108) star-by-starN-body simulation of a Plummer sphere evolving to core collapse, reproducing the expected self-similar density profile over more than 15 orders of magnitude; second, we generate realistic models for typical globular clusters, and we show that their dynamical evolution can produce significant numbers of black hole mergers with masses greater than those produced from isolated binary evolution (such as GW190521, a recently reported merger with component masses in the pulsational pair-instability mass gap). 
    more » « less