This article deals with household-level flood risk mitigation. We present an agent-based modeling framework to simulate the mechanism of natural hazard and human interactions, to allow evaluation of community flood risk, and to predict various adaptation outcomes. The framework considers each household as an autonomous, yet socially connected, agent. A Beta-Bernoulli Bayesian learning model is first applied to measure changes of agents' risk perceptions in response to stochastic storm surges. Then the risk appraisal behaviors of agents, as a function of willingness-to-pay for flood insurance, are measured. Using Miami-Dade County, Florida as a case study, we simulated four scenarios to evaluate the outcomes of alternative adaptation strategies. Results show that community damage decreases significantly after a few years when agents become cognizant of flood risks. Compared to insurance policies with pre-Flood Insurance Rate Maps subsidies, risk-based insurance policies are more effective in promoting community resilience, but it will decrease motivations to purchase flood insurance, especially for households outside of high-risk areas. We evaluated vital model parameters using a local sensitivity analysis. Simulation results demonstrate the importance of an integrated adaptation strategy in community flood risk management.
more »
« less
Economics, Insurance, and Flood Hazards
This article introduces the Symposium Economics, Insurance, and Flood Hazards. We provide background on the magnitude of recent extreme weather events and subsequent flooding in terms of lives and property damage. After a brief background of the National Flood Insurance Program and its renewal, we describe the papers contributed to the symposium and their relationship to the challenges described by the U.S. General Accountability Office (GAO).
more »
« less
- PAR ID:
- 10087710
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Southern Economic Journal
- Volume:
- 85
- Issue:
- 4
- ISSN:
- 0038-4038
- Page Range / eLocation ID:
- p. 1027-1031
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Pluvial floods pose a significant threat to properties, yet comprehensive impact analysis is hindered by data limitations on pluvial inundation. To assess pluvial flood impacts, we leveraged U.S. flood insurance claims and policy records for a subset of properties outside 100-year floodplains, streamflow records, and nationwide precipitation data, enabling us to distinguish damage claims caused by pluvial floods over 1978–2021. Strikingly, 87.1% of the claims analyzed from this subset were due to pluvial floods. Utilizing these pluvial flood claims unveiled distinct regional patterns of pluvial impacts across the contiguous U.S. These patterns are informed by the relationship between claim frequency and precipitation within each region. Remarkably, despite the pervasiveness of impacts, many states are seeing declining uptake in pluvial flood insurance coverage. Our study highlights regions facing heightened pluvial flood risks and underscores the critical need for enhanced consideration of pluvial inundation within risk management frameworks.more » « less
-
This study presents the first systematic literature review of academic research on the FEMA Community Rating System (CRS) program. The CRS is a voluntary program created in 1990 as a means to incentivize communities in the United States to implement floodplain management activities that surpass those required under the National Flood Insurance Program. As participating communities adopt additional flood mitigation measures, flood insurance policyholders in those communities receive reductions in their flood insurance premiums. To identify studies for inclusion, the authors searched three academic databases using the keywords “Community Rating System” and “Federal Emergency Management Agency” and “Community Rating System” and “FEMA.” The search uncovered 44 studies that met the selection criteria (e.g., peer-reviewed, focus on CRS, and empirical) and are included in the review. The findings provide significant insights into the current state of research on the CRS. This paper concludes by providing some recommendations to policymakers aiming to enhance communities’ resilience to floods and by outlining a future research agenda for the academic and practitioner communities.more » « less
-
Abstract Flooding remains a major problem for the United States, causing numerous deaths and damaging countless properties. To reduce the impact of flooding on communities, the U.S. government established the Community Rating System (CRS) in 1990 to reduce flood damages by incentivizing communities to engage in flood risk management initiatives that surpass those required by the National Flood Insurance Program. In return, communities enjoy discounted flood insurance premiums. Despite the fact that the CRS raises concerns about the potential for unevenly distributed impacts across different income groups, no study has examined the equity implications of the CRS. This study thus investigates the possibility of unintended consequences of the CRS by answering the question: What is the effect of the CRS on poverty and income inequality? Understanding the impacts of the CRS on poverty and income inequality is useful in fully assessing the unintended consequences of the CRS. The study estimates four fixed‐effects regression models using a panel data set of neighborhood‐level observations from 1970 to 2010. The results indicate that median incomes are lower in CRS communities, but rise in floodplains. Also, the CRS attracts poor residents, but relocates them away from floodplains. Additionally, the CRS attracts top earners, including in floodplains. Finally, the CRS encourages income inequality, but discourages income inequality in floodplains. A better understanding of these unintended consequences of the CRS on poverty and income inequality can help to improve the design and performance of the CRS and, ultimately, increase community resilience to flood disasters.more » « less
-
Flooding risk results from complex interactions between hydrological hazards (e.g., riverine inundation during periods of heavy rainfall), exposure, vulnerability (e.g., the potential for structural damage or loss of life), and resilience (how well we recover, learn from, and adapt to past floods). Building on recent coupled conceptualizations of these complex interactions, we characterize human–flood interactions (collective memory and risk-enduring attitude) at a more comprehensive scale than has been attempted to date across 50 US metropolitan statistical areas with a sociohydrologic (SH) model calibrated with accessible local data (historical records of annual peak streamflow, flood insurance loss claims, active insurance policy records, and population density). A cluster analysis on calibrated SH model parameter sets for metropolitan areas identified two dominant behaviors: 1) “risk-enduring” cities with lower flooding defenses and longer memory of past flood loss events and 2) “risk-averse” cities with higher flooding defenses and reduced memory of past flooding. These divergent behaviors correlated with differences in local stream flashiness indices (i.e., the frequency and rapidity of daily changes in streamflow), maximum dam heights, and the proportion of White to non-White residents in US metropolitan areas. Risk-averse cities tended to exist within regions characterized by flashier streamflow conditions, larger dams, and larger proportions of White residents. Our research supports the development of SH models in urban metropolitan areas and the design of risk management strategies that consider both demographically heterogeneous populations, changing flood defenses, and temporal changes in community risk perceptions and tolerance.more » « less
An official website of the United States government
