- PAR ID:
- 10313253
- Date Published:
- Journal Name:
- Risk Analysis
- ISSN:
- 0272-4332
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
We study the problem of designing cyber insurance policies in an interdependent network, where the loss of one agent (a primary party) depends not only on his own effort, but also on the investments and efforts of others (third parties) in the same eco-system (i.e., externalities). In designing cyber insurance policies, the conventional wisdom is to avoid insuring dependent parties for two reasons. First, simultaneous loss incidents threaten the insurer's business and capital. Second, when a loss incident can be attributed to a third party, the insurer of the primary party can get compensation from the insurer of the third party in order to reduce its own risk exposure. In this work, we analyze an interdependent network model in order to understand whether an insurer should avoid or embrace risks interdependencies. We focus on two interdependent agents, where the risk of one agent (primary party) depends on the other agent (third party), but not the other way around. We consider two potential scenarios: one in which an insurer only insures a primary party, and another one in which the insurer of the primary party further insures the third party agent. We show that it is in fact profitable for the primary party's insurer to insure both agents. Further, we show that insuring both agents not only provides higher profit for the insurer, but also reduces the collective risk.more » « less
-
Abstract Flooding causes more damage and severely impacts more people worldwide than any other natural disaster. Flood risk in many parts of the United States is projected to increase due to both continued floodplain development and climate change. Many of our institutions and public policies are not designed to address these changing risk conditions. The practice of grandfathering insurance premiums in the National Flood Insurance Program (NFIP)—allowing an insured to keep a lower rate even when risk has increased—is one such policy. We link a flood hazard model to a flood insurance premium calculator in order to provide illustrative calculations of the possible impact of grandfathering on program revenue and policyholder premiums due to sea level rise for a New York City neighborhood. We conclude by discussing how to preserve the financial soundness of the NFIP while addressing the affordability of insurance in the face of increasing flood risk.
-
We provide sufficient conditions for semi-nonparametric point identification of a mixture model of decision making under risk, when agents make choices in multiple lines of insurance coverage (contexts) by purchasing a bundle. As a first departure from the related literature, the model allows for two preference types. In the first one, agents behave according to standard expected utility theory with CARA Bernoulli utility function, with an agent-specific coefficient of absolute risk aversion whose distribution is left completely unspecified. In the other, agents behave according to the dual theory of choice under risk combined with a one-parameter family distortion function, where the parameter is agent-specific and is drawn from a distribution that is left completely unspecified. Within each preference type, the model allows for unobserved heterogeneity in consideration sets, where the latter form at the bundle level—a second departure from the related literature. Our point identification result rests on observing sufficient variation in covariates across contexts, without requiring any independent variation across alternatives within a single context. We estimate the model on data on households’ deductible choices in two lines of property insurance, and use the results to assess the welfare implications of a hypothetical market intervention where the two lines of insurance are combined into a single one. We study the role of limited consideration in mediating the welfare effects of such intervention.more » « less
-
Abstract Floods are among the costliest natural hazards and their consequences are expected to increase further in the future due to urbanization in flood-prone areas. It is essential that policymakers understand the factors governing the dynamics of urbanization to adopt proper disaster risk reduction techniques. Peoples’ relocation preferences and their perception of flood risk (collectively called human behavior) are among the most important factors that influence urbanization in flood-prone areas. Current studies focusing on flood risk assessment do not consider the effect of human behavior on urbanization and how it may change the nature of the risk. Moreover, flood mitigation policies are implemented without considering the role of human behavior and how the community will cope with measures such as buyout, land acquisition, and relocation that are often adopted to minimize development in flood-prone regions. Therefore, such policies may either be resisted by the community or result in severe socioeconomic consequences. In this study, we present a new Agent-Based Model (ABM) to investigate the complex interaction between human behavior and urbanization and its role in creating future communities vulnerable to flood events. We identify critical factors in the decisions of households to locate or relocate and adopt policies compatible with human behavior. The results show that when people are informed about the flood risk and proper incentives are provided, the demand for housing within 500-year floodplain may be reduced as much as 15% by 2040 for the case study considered. On the contrary, if people are not informed of the risk, 29% of the housing choices will reside in floodplains. The analyses also demonstrate that neighborhood quality—influenced by accessibility to highways, education facilities, the city center, water bodies, and green spaces, respectively—is the most influential factor in peoples’ decisions on where to locate. These results provide new insights that may be used to assist city planners and stakeholders in examining tradeoffs between costs and benefits of future land development in achieving sustainable and resilient cities.
-
Teamwork is a set of interrelated reasoning, actions and behaviors of team members that facilitate common objectives. Teamwork theory and experiments have resulted in a set of states and processes for team effectiveness in both human-human and agent-agent teams. However, human-agent teaming is less well studied because it is so new and involves asymmetry in policy and intent not present in human teams. To optimize team performance in human-agent teaming, it is critical that agents infer human intent and adapt their polices for smooth coordination. Most literature in human-agent teaming builds agents referencing a learned human model. Though these agents are guaranteed to perform well with the learned model, they lay heavy assumptions on human policy such as optimality and consistency, which is unlikely in many real-world scenarios. In this paper, we propose a novel adaptive agent architecture in human-model-free setting on a two-player cooperative game, namely Team Space Fortress (TSF). Previous human-human team research have shown complementary policies in TSF game and diversity in human players’ skill, which encourages us to relax the assumptions on human policy. Therefore, we discard learning human models from human data, and instead use an adaptation strategy on a pre-trained library of exemplar policies composed of RL algorithms or rule-based methods with minimal assumptions of human behavior. The adaptation strategy relies on a novel similarity metric to infer human policy and then selects the most complementary policy in our library to maximize the team performance. The adaptive agent architecture can be deployed in real-time and generalize to any off-the-shelf static agents. We conducted human-agent experiments to evaluate the proposed adaptive agent framework, and demonstrated the suboptimality, diversity, and adaptability of human policies in human-agent teams.more » « less