skip to main content


Title: Exploiting Boron Coordination: B←N Bond Supports a [2+2] Photodimerization in the Solid State and Generation of a Diboron Bis‐Tweezer for Benzene/Thiophene Separation
Abstract

B←N coordination supports a [2+2] photodimerization in the solid state. The bond is defined by an orthogonal interaction between stilbazole and a phenylboronic ester to enable a stereocontrolled and rapid photoreaction. The cyclobutane photoproduct affords a novel diboron bis‐tweezer adduct that is used to separate a mixture of benzene and thiophene upon crystallization.

 
more » « less
Award ID(s):
1708673
PAR ID:
10087912
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
58
Issue:
16
ISSN:
1433-7851
Page Range / eLocation ID:
p. 5413-5416
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We consider thecapacitated cycle covering problem: given an undirected, complete graphGwith metric edge lengths and demands on the vertices, we want to cover the vertices with vertex-disjoint cycles, each serving a demand of at most one. The objective is to minimize a linear combination of the total length and the number of cycles. This problem is closely related to the capacitated vehicle routing problem (CVRP) and other cycle cover problems such as min-max cycle cover and bounded cycle cover. We show that a greedy algorithm followed by a post-processing step yields a$$(2 + \frac{2}{7})$$(2+27)-approximation for this problem by comparing the solution to a polymatroid relaxation. We also show that the analysis of our algorithm is tight and provide a$$2 + \epsilon $$2+ϵlower bound for the relaxation.

     
    more » « less
  2. Abstract

    We study tight projective 2‐designs in three different settings. In the complex setting, Zauner's conjecture predicts the existence of a tight projective 2‐design in every dimension. Pandey, Paulsen, Prakash, and Rahaman recently proposed an approach to make quantitative progress on this conjecture in terms of the entanglement breaking rank of a certain quantum channel. We show that this quantity is equal to the size of the smallest weighted projective 2‐design. Next, in the finite field setting, we introduce a notion of projective 2‐designs, we characterize when such projective 2‐designs are tight, and we provide a construction of such objects. Finally, in the quaternionic setting, we show that every tight projective 2‐design for determines an equi‐isoclinic tight fusion frame of subspaces of of dimension 3.

     
    more » « less
  3. Abstract

    B←N coordination supports a [2+2] photodimerization in the solid state. The bond is defined by an orthogonal interaction between stilbazole and a phenylboronic ester to enable a stereocontrolled and rapid photoreaction. The cyclobutane photoproduct affords a novel diboron bis‐tweezer adduct that is used to separate a mixture of benzene and thiophene upon crystallization.

     
    more » « less
  4. Abstract

    Multienzyme complexes have the potential for green catalysis of sequential reactions. TheEscherichia coli2‐oxoglutarate dehydrogenase complex (OGDHc) was converted from a 2‐oxoglutaratedehydrogenase to a 2‐oxoaliphaticdehydrogenase complex by engineering consecutive components. OGDHc catalyzes succinyl‐CoA synthesis in the Krebs cycle. OGDHc is composed of three components: E1o, 2‐oxoglutarate dehydrogenase; E2o, dihydrolipoylsuccinyl transferase; E3, dihydrolipoyl dehydrogenase. There are three substrate checkpoints. One is in E1o and two in E2o. OGDHc was reprogrammed to accept alternative substrates by evolving the E1o and E2o components. Wt‐ODGHc does not accept aliphatic substrates. E1o was previously engineered to accept a non‐natural aliphatic substrate, 2‐oxovalerate (2‐OV). E2o also required engineering to accept 2‐OV in the overall reaction. Hence, saturation mutagenesis libraries of E2o were screened for 2‐OV activity. E2o‐S333M, E2o‐H348F, E2o‐H348Q, and E2o‐H348Y were identified to show activity for 2‐OV in the reconstituted complex. Variants also displayed activity for larger aliphatic substrates.

     
    more » « less
  5. Marschall, Tobias (Ed.)
    Abstract Motivation

    JBrowse Jupyter is a package that aims to close the gap between Python programming and genomic visualization. Web-based genome browsers are routinely used for publishing and inspecting genome annotations. Historically they have been deployed at the end of bioinformatics pipelines, typically decoupled from the analysis itself. However, emerging technologies such as Jupyter notebooks enable a more rapid iterative cycle of development, analysis and visualization.

    Results

    We have developed a package that provides a Python interface to JBrowse 2’s suite of embeddable components, including the primary Linear Genome View. The package enables users to quickly set up, launch and customize JBrowse views from Jupyter notebooks. In addition, users can share their data via Google’s Colab notebooks, providing reproducible interactive views.

    Availability and implementation

    JBrowse Jupyter is released under the Apache License and is available for download on PyPI. Source code and demos are available on GitHub at https://github.com/GMOD/jbrowse-jupyter.

     
    more » « less