- Publication Date:
- NSF-PAR ID:
- 10088106
- Journal Name:
- The 13th IEEE International Conference on Automatic Face and Gesture Recognition
- Page Range or eLocation-ID:
- 195 to 202
- Sponsoring Org:
- National Science Foundation
More Like this
-
Displaying emotional states is an important part of nonverbal communication that can facilitate successful interactions. Facial expressions have been studied for their emotional expression, but this work looks at the capacity of body movements to convey different emotions. This work first generates a large set of nonverbal behaviors with a variety of torso and arm properties on a humanoid robot, Quori. Participants in a user study evaluated how much each movement displayed each of eight different emotions. Results indicate that specific movement properties are associated with particular emotions; such as leaning backward and arms held high displaying surprise and leaning forward displaying sadness. Understanding the emotions associated with certain movements can allow for the design of more appropriate behaviors during interactions with humans and could improve people’s perception of the robot.
-
Abstract This study focuses on the individual and joint contributions of two nonverbal channels (i.e., face and upper body) in avatar mediated-virtual environments. 140 dyads were randomly assigned to communicate with each other via platforms that differentially activated or deactivated facial and bodily nonverbal cues. The availability of facial expressions had a positive effect on interpersonal outcomes. More specifically, dyads that were able to see their partner’s facial movements mapped onto their avatars liked each other more, formed more accurate impressions about their partners, and described their interaction experiences more positively compared to those unable to see facial movements. However, the latter was only true when their partner’s bodily gestures were also available and not when only facial movements were available. Dyads showed greater nonverbal synchrony when they could see their partner’s bodily and facial movements. This study also employed machine learning to explore whether nonverbal cues could predict interpersonal attraction. These classifiers predicted high and low interpersonal attraction at an accuracy rate of 65%. These findings highlight the relative significance of facial cues compared to bodily cues on interpersonal outcomes in virtual environments and lend insight into the potential of automatically tracked nonverbal cues to predict interpersonal attitudes.
-
This research work explores different machine learning techniques for recognizing the existence of rapport between two people engaged in a conversation, based on their facial expressions. First using artificially generated pairs of correlated data signals, a coupled gated recurrent unit (cGRU) neural network is developed to measure the extent of similarity between the temporal evolution of pairs of time-series signals. By pre-selecting their covariance values (between 0.1 and 1.0), pairs of coupled sequences are generated. Using the developed cGRU architecture, this covariance between the signals is successfully recovered. Using this and various other coupled architectures, tests for rapport (measured by the extent of mirroring and mimicking of behaviors) are conducted on real-life datasets. On fifty-nine (N = 59) pairs of interactants in an interview setting, a transformer based coupled architecture performs the best in determining the existence of rapport. To test for generalization, the models were applied on never-been-seen data collected 14 years prior, also to predict the existence of rapport. The coupled transformer model again performed the best for this transfer learning task, determining which pairs of interactants had rapport and which did not. The experiments and results demonstrate the advantages of coupled architectures for predicting an interactional processmore »
-
Raynal, Ann M. ; Ranney, Kenneth I. (Ed.)Most research in technologies for the Deaf community have focused on translation using either video or wearable devices. Sensor-augmented gloves have been reported to yield higher gesture recognition rates than camera-based systems; however, they cannot capture information expressed through head and body movement. Gloves are also intrusive and inhibit users in their pursuit of normal daily life, while cameras can raise concerns over privacy and are ineffective in the dark. In contrast, RF sensors are non-contact, non-invasive and do not reveal private information even if hacked. Although RF sensors are unable to measure facial expressions or hand shapes, which would be required for complete translation, this paper aims to exploit near real-time ASL recognition using RF sensors for the design of smart Deaf spaces. In this way, we hope to enable the Deaf community to benefit from advances in technologies that could generate tangible improvements in their quality of life. More specifically, this paper investigates near real-time implementation of machine learning and deep learning architectures for the purpose of sequential ASL signing recognition. We utilize a 60 GHz RF sensor which transmits a frequency modulation continuous wave (FMWC waveform). RF sensors can acquire a unique source of information that ismore »
-
The overall goal of our research is to develop a system of intelligent multimodal affective pedagogical agents that are effective for different types of learners (Adamo et al., 2021). While most of the research on pedagogical agents tends to focus on the cognitive aspects of online learning and instruction, this project explores the less-studied role of affective (or emotional) factors. We aim to design believable animated agents that can convey realistic, natural emotions through speech, facial expressions, and body gestures and that can react to the students’ detected emotional states with emotional intelligence. Within the context of this goal, the specific objective of the work reported in the paper was to examine the extent to which the agents’ facial micro-expressions affect students’ perception of the agents’ emotions and their naturalness. Micro-expressions are very brief facial expressions that occur when a person either deliberately or unconsciously conceals an emotion being felt (Ekman &Friesen, 1969). Our assumption is that if the animated agents display facial micro expressions in addition to macro expressions, they will convey higher expressive richness and naturalness to the viewer, as “the agents can possess two emotional streams, one based on interaction with the viewer and the other basedmore »