skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00PM ET on Friday, December 15 until 2:00 AM ET on Saturday, December 16 due to maintenance. We apologize for the inconvenience.

Title: T-RECSYS: A Novel Music Recommendation System Using Deep Learning
A recommendation system is a program that utilizes techniques to suggest to a user items that they would likely prefer. This paper focuses on an approach to improving music recommendation systems, although the proposed solution could be applied to many different platforms and domains, including Youtube (videos), Netflix (movies), Amazon (shopping), etc. Current systems lack adequate efficiency once more variables are introduced. Our algorithm, Tunes Recommendation System (T-RECSYS), uses a hybrid of content-based and collaborative filtering as input to a deep learning classification model to produce an accurate recommendation system with real-time prediction. We apply our approach to data obtained from the Spotify Recsys Challenge, attaining precision scores as high as 88% at a balanced discrimination threshold.  more » « less
Award ID(s):
Author(s) / Creator(s):
Date Published:
Journal Name:
IEEE International Conference on Consumer Electronics
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. As artificial intelligence (AI) assisted search and recommender systems have become ubiquitous in workplaces and everyday lives, understanding and accounting for fairness has gained increasing attention in the design and evaluation of such systems. While there is a growing body of computing research on measuring system fairness and biases associated with data and algorithms, the impact of human biases that go beyond traditional machine learning (ML) pipelines still remain understudied. In this Perspective Paper, we seek to develop a two-sided fairness framework that not only characterizes data and algorithmic biases, but also highlights the cognitive and perceptual biases that may exacerbate system biases and lead to unfair decisions. Within the framework, we also analyze the interactions between human and system biases in search and recommendation episodes. Built upon the two-sided framework, our research synthesizes intervention and intelligent nudging strategies applied in cognitive and algorithmic debiasing, and also proposes novel goals and measures for evaluating the performance of systems in addressing and proactively mitigating the risks associated with biases in data, algorithms, and bounded rationality. This paper uniquely integrates the insights regarding human biases and system biases into a cohesive framework and extends the concept of fairness from human-centered perspective. The extended fairness framework better reflects the challenges and opportunities in users’ interactions with search and recommender systems of varying modalities. Adopting the two-sided approach in information system design has the potential to enhancing both the effectiveness in online debiasing and the usefulness to boundedly rational users engaging in information-intensive decision-making. 
    more » « less
  2. Abstract

    We describe a recommendation system for HydroShare, a platform for scientific water data sharing. We discuss similarities, differences and challenges for implementing recommendation systems for scientific water data sharing. We discuss and analyze the behaviors that scientists exhibit in using HydroShare as documented by users’ activity logs. Unlike entertainment system users, users on HydroShare tend to be task-oriented, where the set of tasks of interest can change over time, and older interests are sometimes no longer relevant. By validating recommendation approaches against user behavior as expressed in activity logs, we conclude that a combination of content-based filtering and a latent Dirichlet allocation (LDA) topic modeling of user behavior—rather than and instead of LDA classification of dataset topics—provides a workable solution for HydroShare and compares this approach to existing recommendation methods.

    more » « less
  3. State-of-the-art industrial-level recommender system applications mostly adopt complicated model structures such as deep neural networks. While this helps with the model performance, the lack of system explainability caused by these nearly blackbox models also raises concerns and potentially weakens the users’ trust in the system. Existing work on explainable recommendation mostly focuses on designing interpretable model structures to generate model-intrinsic explanations. However, most of them have complex structures, and it is difficult to directly apply these designs onto existing recommendation applications due to the effectiveness and efficiency concerns. However, while there have been some studies on explaining recommendation models without knowing their internal structures (i.e., model-agnostic explanations), these methods have been criticized for not reflecting the actual reasoning process of the recommendation model or, in other words, faithfulness . How to develop model-agnostic explanation methods and evaluate them in terms of faithfulness is mostly unknown. In this work, we propose a reusable evaluation pipeline for model-agnostic explainable recommendation. Our pipeline evaluates the quality of model-agnostic explanation from the perspectives of faithfulness and scrutability. We further propose a model-agnostic explanation framework for recommendation and verify it with the proposed evaluation pipeline. Extensive experiments on public datasets demonstrate that our model-agnostic framework is able to generate explanations that are faithful to the recommendation model. We additionally provide quantitative and qualitative study to show that our explanation framework could enhance the scrutability of blackbox recommendation model. With proper modification, our evaluation pipeline and model-agnostic explanation framework could be easily migrated to existing applications. Through this work, we hope to encourage the community to focus more on faithfulness evaluation of explainable recommender systems. 
    more » « less
  4. Abstract

    Graph representation learning has revolutionized many artificial intelligence and machine learning tasks in recent years, ranging from combinatorial optimization, drug discovery, recommendation systems, image classification, social network analysis to natural language understanding. This paper shows their efficacy in modeling relationships between products and making predictions for unseen product networks. By representing products as nodes and their relationships as edges of a graph, we show how an inductive graph neural network approach, named GraphSAGE, can efficiently learn continuous representations for nodes and edges. These representations also capture product feature information such as price, brand, and engineering attributes. They are combined with a classification model for predicting the existence of a relationship between any two products. Using a case study of the Chinese car market, we find that our method yields double the F-1 score compared to an Exponential Random Graph Model-based method for predicting the co-consideration relationship between cars. While a vanilla Graph-SAGE requires a partial network to make predictions, we augment it with an ‘adjacency prediction model’ to circumvent this limitation. This enables us to predict product relationships when no neighborhood information is known. Finally, we demonstrate how a permutation-based interpretability analysis can provide insights on how design attributes impact the predictions of relationships between products. Overall, this work provides a systematic method to predict the relationships between products in a complex engineering system.

    more » « less
  5. Many of the everyday decisions a user makes rely on the suggestions of online recommendation systems. These systems amass implicit (e.g., location, purchase history, browsing history) and explicit (e.g., reviews, ratings) feedback from multiple users, produce a general consensus, and provide suggestions based on that consensus. However, due to privacy concerns, users are uncomfortable with implicit data collection, thus requiring recommendation systems to be overly dependent on explicit feedback. Unfortunately, users do not frequently provide explicit feedback. This hampers the ability of recommendation systems to provide high-quality suggestions. We introduce Heimdall, the first privacy-respecting implicit preference collection framework that enables recommendation systems to extract user preferences from their activities in a privacy respect- ing manner. The key insight is to enable recommendation systems to run a collector on a user’s device and precisely control the information a collector transmits to the recommendation system back- end. Heimdall introduces immutable blobs as a mechanism to guarantee this property. We implemented Heimdall on the Android plat- form and wrote three example collectors to enhance recommendation systems with implicit feedback. Our performance results suggest that the overhead of immutable blobs is minimal, and a user study of 166 participants indicates that privacy concerns are significantly less when collectors record only specific information—a property that Heimdall enables. 
    more » « less