skip to main content


Title: Choosing sides: unusual ultrafast charge transfer pathways in an asymmetric electron-accepting cyclophane that binds an electron donor
Constructing functional molecular systems for solar energy conversion and quantum information science requires a fundamental understanding of electron transfer in donor–bridge–acceptor (D–B–A) systems as well as competitive reaction pathways in acceptor–donor–acceptor (A–D–A) and acceptor–donor–acceptor′ (A–D–A′) systems. Herein we present a supramolecular complex comprising a tetracationic cyclophane having both phenyl-extended viologen (ExV 2+ ) and dipyridylthiazolothiazole (TTz 2+ ) electron acceptors doubly-linked by means of two p -xylylene linkers (TTzExVBox 4+ ), which readily incorporates a perylene (Per) guest in its cavity (Per ⊂ TTzExVBox 4+ ) to establish an A–D–A′ system, in which the ExV 2+ and TTz 2+ units serve as competing electron acceptors with different reduction potentials. Photoexcitation of the Per guest yields both TTz + ˙–Per + ˙–ExV 2+ and TTz 2+ –Per + ˙–ExV + ˙ in <1 ps, while back electron transfer in TTz 2+ –Per + ˙–ExV + ˙ proceeds via the unusual sequence TTz 2+ –Per + ˙–ExV + ˙ → TTz + ˙–Per + ˙–ExV 2+ → TTz 2+ –Per–ExV 2+ . In addition, selective chemical reduction of TTz 2+ gives Per ⊂ TTzExVBox 3+ ˙, turning the complex into a D–B–A system in which photoexcitation of TTz + ˙ results in the reaction sequence 2 *TTz + ˙–Per–ExV 2+ → TTz 2+ –Per–ExV + ˙ → TTz + ˙–Per–ExV 2+ . Both reactions TTz 2+ –Per + ˙–ExV + ˙ → TTz + ˙–Per + ˙–ExV 2+ and TTz 2+ –Per–ExV + ˙ → TTz + ˙–Per–ExV 2+ occur with a (16 ± 1 ps) −1 rate constant irrespective of whether the bridge molecule is Per + ˙ or Per. These results are explained using the superexchange mechanism in which the ionic states of the perylene guest serve as virtual states in each case and demonstrate a novel supramolecular platform for studying the effects of bridge energetics within D–B–A systems.  more » « less
Award ID(s):
1710104
NSF-PAR ID:
10088394
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Chemical Science
ISSN:
2041-6520
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Electron transfer (ET) in donor–bridge–acceptor (DBA) compounds depends strongly on the structural and electronic properties of the bridge. Among the bridges that support donor–acceptor conjugation, alkyne bridges have attractive and unique properties: they are compact, possess linear structure permitting access to high symmetry DBA molecules, and allow torsional motion of D and A, especially for longer bridges. We report conformation dependent electron transfer dynamics in a set of novel DBA compounds featuring butadiyne (C4) bridge, N -isopropyl-1,8-napthalimide (NAP) acceptors, and donors that span a range of reduction potentials (trimethyl silane (Si-C4-NAP), phenyl (Ph-C4-NAP), and dimethyl aniline (D-C4-NAP)). Transient mid-IR absorption spectra of the CC bridge stretching modes, transient spectra in the visible range, and TD-DFT calculations were used to decipher the ET mechanisms. We found that the electronic excited state energies and, especially, the transition dipoles (S 0 → S n ) depend strongly on the dihedral angle ( θ ) between D and A and the frontier orbital symmetry, offering an opportunity to photo-select particular excited states with specific ranges of dihedral angles by exciting at chosen wavelengths. For example, excitation of D-C4-NAP at 400 nm predominantly prepares an S 1 excited state in the planar conformations ( θ ∼ 0) but selects an S 2 state with θ ∼ 90°, indicating the dominant role of the molecular symmetry in the photophysics. Moreover, the symmetry of the frontier orbitals of such DBA compounds not only defines the photo-selection outcome, but also determines the rate of the S 2 → S 1 charge separation reaction. Unprecedented variation of the S 2 –S 1 electronic coupling with θ by over four orders of magnitude results in slow ET at θ ca. 0° and 90° but extremely fast ET at θ of 20–60°. The unique features of high-symmetry alkyne bridged DBA structures enable frequency dependent ET rate selection and make this family of compounds promising targets for the vibrational excitation control of ET kinetics. 
    more » « less
  2. Absorption of electronic acceptors in the accessible channels of an assembled triphenylamine (TPA) bis -urea macrocycle 1 enabled the study of electron transfer from the walls of the TPA framework to the encapsulated guests. The TPA host is isoskeletal in all host–guest structures analyzed with guests 2,1,3-benzothiadiazole, 2,5-dichlorobenzoquinone and I 2 loading in single-crystal-to-single-crystal transformations. Analysis of the crystal structures highlights how the spatial proximity and orientation of the TPA host and the entrapped guests influence their resulting photophysical properties and allow direct comparison of the different donor–acceptor complexes. Diffuse reflectance spectroscopy shows that upon complex formation 1·2,5-dichlorobenzoquinone exhibits a charge transfer (CT) transition. Whereas, the 1·2,1,3-benzothiadiazole complex undergoes a photoinduced electron transfer (PET) upon irradiation with 365 nm LEDs. The CT absorptions were also identified with the aid of time dependent density functional theory (TD-DFT) calculations. Cyclic voltammetry experiments show that 2,1,3-benzothiadiazole undergoes reversible reduction within the host–guest complex. Moreover, the optical band gaps of the host 1·2,5-dichlorobenzoquinone (1.66 eV), and host 1·2,1,3-benzothiadiazole (2.15 eV) complexes are significantly smaller as compared to the free host 1 material (3.19 eV). Overall, understanding this supramolecular electron transfer strategy should pave the way towards designing lower band gap inclusion complexes. 
    more » « less
  3. Abstract

    A catalyst‐ and additive‐free decarbonylative trifluoromethylthiolation of aldehyde feedstocks has been developed. This operationally simple, scalable, and open‐to‐air transformation is driven by the selective photoexcitation of electron donor‐acceptor (EDA) complexes, stemming from the association of 1,4‐dihydropyridines (donor) withN‐(trifluoromethylthio)phthalimide (acceptor), to trigger intermolecular single‐electron transfer events under ambient‐ and visible light‐promoted conditions. Extension to other electron acceptors enables the synthesis of thiocyanates and thioesters, as well as the difunctionalization of [1.1.1]propellane. The mechanistic intricacies of this photochemical paradigm are elucidated through a combination of experimental efforts and high‐level quantum mechanical calculations [dispersion‐corrected (U)DFT, DLPNO‐CCSD(T), and TD‐DFT]. This comprehensive study highlights the necessity for EDA complexation for efficient alkyl radical generation. Computation of subsequent ground state pathways reveals that SH2 addition of the alkyl radical to the intermediate radical EDA complex is extremely exergonic and results in a charge transfer event from the dihydropyridine donor to theN‐(trifluoromethylthio)phthalimide acceptor of the EDA complex. Experimental and computational results further suggest that product formation also occursviaSH2 reaction of alkyl radicals with 1,2‐bis(trifluoromethyl)disulfane, generated in‐situ through combination of thiyl radicals.

    magnified image

     
    more » « less
  4. Photochemistry powers numerous processes from luminescence and human vision, to light harvesting. However, the elucidation of multidimensional photochemical reaction coordinates on molecular timescales remains challenging. We developed wavelength-tunable femtosecond stimulated Raman spectroscopy to simultaneously achieve pre-resonance enhancement for transient reactant and product species of the widely used photoacid pyranine undergoing excited-state proton transfer (ESPT) reaction in solution. In the low-frequency region, the 280 cm −1 ring deformation mode following 400 nm photoexcitation exhibits pronounced intensity oscillations on the sub-picosecond timescale due to anharmonic vibrational coupling to the 180 cm −1 hydrogen-bond stretching mode only in ESPT-capable solvents, indicating a primary event of functional relevance. This leads to the contact ion pair formation on the 3 ps timescale before diffusion-controlled separation. The intermolecular 180 cm −1 mode also reveals vibrational cooling time constants, ∼500 fs and 45 ps in both H 2 O and D 2 O, which differ from ESPT time constants of ∼3/8 and 90/250 ps in H 2 O/D 2 O, respectively. Spectral results using H 2 18 O further substantiate the functional role of the intermolecular 180 cm −1 mode in modulating the distance between proton donor and acceptor and forming the transient ion pair. The direct observation of molecular structural evolution across a wide spectral region during photochemical reactions enriches our fundamental understanding of potential energy surface and holds the key to advancing energy and biological sciences with exceptional atomic and temporal precision. 
    more » « less
  5. null (Ed.)
    Organic donor–acceptor (D–A) co-crystals have attracted much interest due to their important optical and electronic properties. Co-crystals having ⋯DADA⋯ π-stacked morphologies are especially interesting because photoexcitation produces a charge-transfer (CT) exciton, D˙ + –A˙ − , between adjacent D–A molecules. Although several studies have reported on the steady-state optical properties of this type of CT exciton, very few have measured the dynamics of its formation and decay in a single D–A co-crystal. We have co-crystallized a peri -xanthenoxanthene ( PXX ) donor with a N , N -bis(3-pentyl)-2,5,8,11-tetraphenylperylene-3,4:9,10-bis(dicarboximide) ( Ph4PDI ) acceptor to give an orthorhombic PXX – Ph4PDI ⋯DADA⋯ π-stacked co-crystal with a CT transition dipole moment that is perpendicular to the transition moments for S n ← S 0 excitation of PXX and Ph4PDI . Using polarized, broadband, femtosecond pump–probe microscopy, we have determined that selective photoexcitation of Ph4PDI in the single co-crystal results in CT exciton formation within the 300 fs instrument response time. At early times (0.3 ≤ t ≤ 500 ps), the CT excitons decay with a t −1/2 dependence, which is attributed to CT biexciton annihilation within the one-dimensional ⋯DADA⋯ π-stacks producing high-energy, long-lived (>8 ns) electron–hole pairs in the crystal. These energetic charge carriers may prove useful in applications ranging from photovoltaics and opto-electronics to photocatalysis. 
    more » « less