skip to main content


Title: Land use strategies to mitigate climate change in carbon dense temperate forests
Strategies to mitigate carbon dioxide emissions through forestry activities have been proposed, but ecosystem process-based integration of climate change, enhanced CO 2 , disturbance from fire, and management actions at regional scales are extremely limited. Here, we examine the relative merits of afforestation, reforestation, management changes, and harvest residue bioenergy use in the Pacific Northwest. This region represents some of the highest carbon density forests in the world, which can store carbon in trees for 800 y or more. Oregon’s net ecosystem carbon balance (NECB) was equivalent to 72% of total emissions in 2011–2015. By 2100, simulations show increased net carbon uptake with little change in wildfires. Reforestation, afforestation, lengthened harvest cycles on private lands, and restricting harvest on public lands increase NECB 56% by 2100, with the latter two actions contributing the most. Resultant cobenefits included water availability and biodiversity, primarily from increased forest area, age, and species diversity. Converting 127,000 ha of irrigated grass crops to native forests could decrease irrigation demand by 233 billion m 3 ⋅y −1 . Utilizing harvest residues for bioenergy production instead of leaving them in forests to decompose increased emissions in the short-term (50 y), reducing mitigation effectiveness. Increasing forest carbon on public lands reduced emissions compared with storage in wood products because the residence time is more than twice that of wood products. Hence, temperate forests with high carbon densities and lower vulnerability to mortality have substantial potential for reducing forest sector emissions. Our analysis framework provides a template for assessments in other temperate regions.  more » « less
Award ID(s):
1553049
NSF-PAR ID:
10088562
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
115
Issue:
14
ISSN:
0027-8424
Page Range / eLocation ID:
3663 to 3668
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Atmospheric greenhouse gases (GHGs) must be reduced to avoid an unsustainable climate. Because carbon dioxide is removed from the atmosphere and sequestered in forests and wood products, mitigation strategies to sustain and increase forest carbon sequestration are being developed. These strategies require full accounting of forest sector GHG budgets. Here, we describe a rigorous approach using over one million observations from forest inventory data and a regionally calibrated life-cycle assessment for calculating cradle-to-grave forest sector emissions and sequestration. We find that Western US forests are net sinks because there is a positive net balance of forest carbon uptake exceeding losses due to harvesting, wood product use, and combustion by wildfire. However, over 100 years of wood product usage is reducing the potential annual sink by an average of 21%, suggesting forest carbon storage can become more effective in climate mitigation through reduction in harvest, longer rotations, or more efficient wood product usage. Of the ∼10 700 million metric tonnes of carbon dioxide equivalents removed from west coast forests since 1900, 81% of it has been returned to the atmosphere or deposited in landfills. Moreover, state and federal reporting have erroneously excluded some product-related emissions, resulting in 25%–55% underestimation of state total CO2emissions. For states seeking to reach GHG reduction mandates by 2030, it is important that state CO2budgets are effectively determined or claimed reductions will be insufficient to mitigate climate change.

     
    more » « less
  2. Afforestation and reforestation (AR) on marginal land are nature-based solutions to climate change. There is a gap in understanding the climate mitigation potential of protection and commercial AR with different combinations of forest plantation management and wood utilization pathways. Here, we fill the gap using a dynamic, multiscale life cycle assessment to estimate one-century greenhouse gas (GHG) mitigation delivered by (both traditional and innovative) commercial and protection AR with different planting density and thinning regimes on marginal land in the southeastern United States. We found that innovative commercial AR generally mitigates more GHGs across 100 y (3.73 to 4.15 Giga tonnes of CO 2 equivalent (Gt CO 2 e)) through cross-laminated timber (CLT) and biochar than protection AR (3.35 to 3.69 Gt CO 2 e) and commercial AR with traditional lumber production (3.17 to 3.51 Gt CO 2 e), especially in moderately cooler and dryer regions in this study with higher forest carbon yield, soil clay content, and CLT substitution. In a shorter timeframe (≤50 y), protection AR is likely to deliver higher GHG mitigation. On average, for the same wood product, low-density plantations without thinning and high-density plantations with thinning mitigate more life cycle GHGs and result in higher carbon stock than that of low-density with thinning plantations. Commercial AR increases the carbon stock of standing plantations, wood products, and biochar, but the increases have uneven spatial distributions. Georgia (0.38 Gt C), Alabama (0.28 Gt C), and North Carolina (0.13 Gt C) have the largest carbon stock increases that can be prioritized for innovative commercial AR projects on marginal land. 
    more » « less
  3. Climate change has intensified the scale of global wildfire impacts in recent decades. In order to reduce fire impacts, management policies are being proposed in the western United States to lower fire risk that focus on harvesting trees, including large-diameter trees. Many policies already do not include diameter limits and some recent policies have proposed diameter increases in fuel reduction strategies. While the primary goal is fire risk reduction, these policies have been interpreted as strategies that can be used to save trees from being killed by fire, thus preventing carbon emissions and feedbacks to climate warming. This interpretation has already resulted in cutting down trees that likely would have survived fire, resulting in forest carbon losses that are greater than if a wildfire had occurred. To help policymakers and managers avoid these unintended carbon consequences and to present carbon emission sources in the same context, we calculate western United States forest fire carbon emissions and compare them with harvest and fossil fuel emissions (FFE) over the same timeframe. We find that forest fire carbon emissions are on average only 6% of anthropogenic FFE over the past decade. While wildfire occurrence and area burned have increased over the last three decades, per area fire emissions for extreme fire events are relatively constant. In contrast, harvest of mature trees releases a higher density of carbon emissions (e.g., per unit area) relative to wildfire (150–800%) because harvest causes a higher rate of tree mortality than wildfire. Our results show that increasing harvest of mature trees to save them from fire increases emissions rather than preventing them. Shown in context, our results demonstrate that reducing FFEs will do more for climate mitigation potential (and subsequent reduction of fire) than increasing extractive harvest to prevent fire emissions. On public lands, management aimed at less-intensive fuels reduction (such as removal of “ladder” fuels, i.e., shrubs and small-diameter trees) will help to balance reducing catastrophic fire and leave live mature trees on the landscape to continue carbon uptake. 
    more » « less
  4. Abstract

    Scenarios that limit global warming to below 2 °C by 2100 assume significant land-use change to support large-scale carbon dioxide (CO2) removal from the atmosphere by afforestation/reforestation, avoided deforestation, and Biomass Energy with Carbon Capture and Storage (BECCS). The more ambitious mitigation scenarios require even greater land area for mitigation and/or earlier adoption of CO2removal strategies. Here we show that additional land-use change to meet a 1.5 °C climate change target could result in net losses of carbon from the land. The effectiveness of BECCS strongly depends on several assumptions related to the choice of biomass, the fate of initial above ground biomass, and the fossil-fuel emissions offset in the energy system. Depending on these factors, carbon removed from the atmosphere through BECCS could easily be offset by losses due to land-use change. If BECCS involves replacing high-carbon content ecosystems with crops, then forest-based mitigation could be more efficient for atmospheric CO2removal than BECCS.

     
    more » « less
  5. Abstract

    As demand for wood products increases in step with global population growth, balancing the potentially competing values of biodiversity conservation, carbon storage and timber production is a major challenge. Land sparing involves conserving forest while growing timber in intensively managed areas. On the other hand, land sharing utilizes ecological forestry approaches, but with a larger management footprint due to lower yields. While the sparing‐sharing framework has been widely tested and debated in agricultural settings to balance competing values, such land‐allocation strategies have been rarely studied in forestry.

    We examined whether a sparing, sharing or Triad strategy best achieves multiple forest objectives simultaneously. In Triad, management units (stands) in forest landscapes are allocated to one of three treatments: reserve (where conservation is the sole objective), intensive (timber production is the sole objective) and ecological (both objectives are combined). To our knowledge, ours is the first Triad study from the temperate zone to quantify direct measures of biodiversity (e.g. species' abundance).

    Using a commonly utilized forest planning tool parameterized with empirical data, we modelled the capacity of a temperate rainforest to provide multiple ecosystem services (biodiversity, carbon storage, timber production and old‐growth forest structure) over 125 years based on 43 different allocation scenarios. We then quantified trade‐offs between scenarios, taking into account the landscape structure, and determined which strategies most consistently balanced ecosystem services.

    Sparing strategies were best when the services provided by both old‐growth and early seral (young) forests were prioritized, but at a cost to species associated with mid‐seral stages, which benefitted most from Triad and sharing strategies. Therefore, sparing provides the greatest net benefit, particularly given that old‐growth‐associated species and ecosystem services are currently of the greatest conservation concern.

    Synthesis and applications. We found that maximizing multiple elements of biodiversity and ecosystem services simultaneously with a single management strategy was elusive. The strategy that maximized each service and species varied greatly by both the service and the level of timber production. Fortunately, a diversity of management options can produce the same wood supply, providing ample decision space for establishing priorities and evaluating trade‐offs.

     
    more » « less