skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: CFD ANALYSIS OF STALL IN A WELLS TURBINE
The Wells turbine is a self-rectifying device that employs a symmetrical blade profile, and is often used in conjunction with an oscillating water column to extract energy from ocean waves. The effects of solidity, angle of attack, blade shape and many other parameters have been widely studied both numerically and experimentally. To date, several 3-D numerical simulations have been performed using commercial software, mostly with steady flow conditions and employing various two-equation turbulence models. In this paper, the open source code Open- FOAM is used to numerically study the performance characteristics of a Wells turbine using a two-equation turbulence model, namely the Menter SST model, in conjunction with a transient fluid solver.  more » « less
Award ID(s):
1659710
PAR ID:
10088712
Author(s) / Creator(s):
;
Date Published:
Journal Name:
ASME 2018 Power Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Turbulent wake flows behind helical- and straight-bladed vertical axis wind turbines (VAWTs) in boundary layer turbulence are numerically studied using the large-eddy simulation (LES) method combined with the actuator line model. Based on the LES data, systematic statistical analyses are performed to explore the effects of blade geometry on the characteristics of the turbine wake. The time-averaged velocity fields show that the helical-bladed VAWT generates a mean vertical velocity along the center of the turbine wake, which causes a vertical inclination of the turbine wake and alters the vertical gradient of the mean streamwise velocity. Consequently, the intensities of the turbulent fluctuations and Reynolds shear stresses are also affected by the helical-shaped blades when compared with those in the straight-bladed VAWT case. The LES results also show that reversing the twist direction of the helical-bladed VAWT causes the spatial patterns of the turbulent wake flow statistics to be reversed in the vertical direction. Moreover, the mass and kinetic energy transports in the turbine wakes are directly visualized using the transport tube method, and the comparison between the helical- and straight-bladed VAWT cases show significant differences in the downstream evolution of the transport tubes. 
    more » « less
  2. Abstract Existing estimations of waste from wind energy infrastructure that is headed for, flowing through, or having reached the terminus of various post-processing pathways have primarily relied on reported capacity to extrapolate the material weight of turbine components. This data can be used to project future streams of composite blade material coming from wind farm repowering and decommissioning and inform policies to optimize or improve certain blade End of Life (EoL) options. However, rated capacity alone is insufficient to quantify or characterize the dynamics of US wind fleet retirement, since turbines are often repowered with new blades but their capacity remains the same. This research demonstrates an alternative method, comparing various mass estimation techniques and identifying blade models that have been retired or are soon to enter waste pathways due to turbine repowering by spatiotemporal comparison of periodic versions of the United States Geological Survey (USGS) Wind Turbine Database (USWTDB). These analyses are used to compile a list of turbine and blade models that will be at the forefront of national repowering and decommissioning movements in the near future. Mass of future waste flows are totalled and can help inform protocols and frameworks for blade material EoL processes. 
    more » « less
  3. Severe winds produced by thunderstorm downbursts pose a serious risk to the structural integrity of wind turbines. However, guidelines for wind turbine design (such as the International Electrotechnical Commission Standard, IEC 61400-1) do not describe the key physical characteristics of such events realistically. In this study, a large-eddy simulation model is employed to generate several idealized downburst events during contrasting atmospheric stability conditions that range from convective through neutral to stable. Wind and turbulence fields generated from this dataset are then used as inflow for a 5-MW land-based wind turbine model; associated turbine loads are estimated and compared for the different inflow conditions. We first discuss time-varying characteristics of the turbine-scale flow fields during the downbursts; next, we investigate the relationship between the velocity time series and turbine loads as well as the influence and effectiveness of turbine control systems (for blade pitch and nacelle yaw). Finally, a statistical analysis is conducted to assess the distinct influences of the contrasting stability regimes on extreme and fatigue loads on the wind turbine. 
    more » « less
  4. The current trend in offshore wind energy is to design and install systems with larger swept areas that yield unprecedented efficiency. Long and slender blades are needed to achieve this objective. As a result of aerodynamic and structural tailoring, slender blades are particularly susceptible to various dynamic instability phenomena during standard operations. One of these phenomena is the bending-torsion flutter that may lead either to structural failure or system breakdown. The research author has been examining blade flutter under the influence of stochastic perturbations, which include both flow turbulence and aeroelastic load variability. A reduced-order Markov model has been used to describe the effects of the various random perturbations. Mean-square stability has been recently explored; results suggest that perturbations may negatively impact the flutter angular speed and increase the risk of failure. In this study the model is employed to investigate moment stability beyond mean squares, observing that dynamic instability involves nonlinear propagation of the perturbations and may exhibit amplitude dependency. Third-order instability is investigated and compared against previous numerical results. The NREL 5MW reference wind turbine blade is used as a benchmark example. 
    more » « less
  5. Abstract Wind energy harvesters are emerging as a viable alternative to standard, large horizontal-axis wind turbines. This study continues a recent investigation on the operational features of a torsional-flutter-based apparatus, proposed by the author to extract wind energy. The apparatus is composed of a non-deformable, flapping blade-airfoil. A nonlinear torsional spring mechanism, either simulated by a Duffing model or a hybrid Duffing–van der Pol model, installed at equally spaced supports, enables limit-cycle, post-critical vibration. To enhance the output power, stochastic resonance principles are invoked through a novel, negative stiffness mechanism that is coupled to the eddy current device for energy conversion. The output power is explored by numerically solving the stochastic differential equation of the model, accounting for incoming flow turbulence. Three main harvester types with variable configuration are examined; the chord length of the blade-airfoil, used for energy harvesting, varies between 0.5 and 1 m; the spanwise-length-to-chord aspect ratio is four. The flapping frequency varies between 0.10 and 0.25 Hz. The study demonstrates that exploitation of negative stiffness mechanism can improve the performance of the harvester. 
    more » « less