Fiber reinforced polymer (FRP) composite materials have been used in a variety of civil and infrastructure applications since the early1980s, including in wind turbine blades. The world is now confronting the problem of how to dispose of decommissioned blades in an environmentally sustainable manner. One proposed solution is to repurpose the blades for use in new structures. One promising repurposing application is in pedestrian and cycle bridges. This paper reports on the characterization of a 13.4-m long FRP wind blade manufactured by LM Windpower (Kolding, Demark) in 1994. Two blades of this type were used as girders for a pedestrian bridge on a greenway (walking and biking trail) in Cork, Ireland. The as-received geometric, material, and structural properties of the 27 year-old blade were obtained for use in the structural design of the bridge. The material tests included physical (volume fraction and laminate architecture) and mechanical (tension and compression) tests at multiple locations. Full-scale flexural testing of a 4-m long section of the blade between 7 and 11 m from the root of the blade was performed to determine the load-deflection behavior, ultimate capacity, strain history, and failure modes when loaded to failure. Key details of the testing and the results are provided. The results of the testing revealed that the FRP material is still in excellent condition and that the blade has the strength and stiffness in flexure to serve as a girder for the bridge constructed.
more »
« less
Higher-order moment stability of large wind turbine blades under stochastic perturbations
The current trend in offshore wind energy is to design and install systems with larger swept areas that yield unprecedented efficiency. Long and slender blades are needed to achieve this objective. As a result of aerodynamic and structural tailoring, slender blades are particularly susceptible to various dynamic instability phenomena during standard operations. One of these phenomena is the bending-torsion flutter that may lead either to structural failure or system breakdown. The research author has been examining blade flutter under the influence of stochastic perturbations, which include both flow turbulence and aeroelastic load variability. A reduced-order Markov model has been used to describe the effects of the various random perturbations. Mean-square stability has been recently explored; results suggest that perturbations may negatively impact the flutter angular speed and increase the risk of failure. In this study the model is employed to investigate moment stability beyond mean squares, observing that dynamic instability involves nonlinear propagation of the perturbations and may exhibit amplitude dependency. Third-order instability is investigated and compared against previous numerical results. The NREL 5MW reference wind turbine blade is used as a benchmark example.
more »
« less
- Award ID(s):
- 2020063
- PAR ID:
- 10532195
- Publisher / Repository:
- IOP Science
- Date Published:
- Journal Name:
- Journal of Physics: Conference Series
- Volume:
- 2647
- Issue:
- 11
- ISSN:
- 1742-6588
- Page Range / eLocation ID:
- 112001
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The production of wind energy worldwide has increased 20-fold since 2001. Composite material wind turbine blades, typically designed for a 20-year fatigue life, are beginning to come out of service in large numbers. In general, these de-commission blades, composed primarily of glass fibers in a thermoset matrix, are demolished and landfilled. There is little motivation for recycling the composite materials, as the processes for reclaiming the fibers (solvolysis, pyrolysis) have not been proven to be economically viable. This research seeks to establish structural re-use applications for wind turbine blades in civil engineering infrastructure, hypothesizing that advanced composite materials may be an attractive alternative to conventional infrastructure materials (e.g. steel, reinforced concrete). This paper presents an analysis and materials characterization of a 47 meter Clipper C96 wind blade. The primarily numerical analysis is accompanied by materials characterization taken from an un-used Clipper blade donated to the project from the Wind Turbine Testing Center (WTTC). The paper presents a brief background on wind turbine blade adaptive re-use, proposing a hypothetical load bearing application of the Clipper wind blade as an electrical transmission tower structure carrying axial compression, along with flapwise and edgewise bending forces. The paper summarizes the composite laminates and cross-section geometries of the blade and establishes the axial and flexural stiffnesses of the blade at multiple sections along the blade length. From a first-order estimation of applied loads for the tower application, the resulting stresses in the composite materials are estimated and compared to the design material properties for the wind blade as originally constructed.more » « less
-
This paper investigates the energy production of a “meso-scale”, wind-based energy harvester that exploits the torsional aeroelastic instability of a rigid blade-airfoil, elastically supported at equidistant supports. Torsional flutter is a single mode aeroelastic instability phenomenon, in which a diverging dynamic angular rotation of a body occurs. The apparatus relies on a simple mechanism that uses flow-induced pitch motion to extract and convert airflow kinetic energy to electrical energy. The system is composed by a rigid blade-airfoil, connected to a support structure through a non-linear restoring force (torsional spring-like) mechanism that enables the rotation about a reference pivot axis. The proposed technology is designed to be efficient in the range of low and medium wind speeds (10-13 m/s), in which horizontal-axis wind turbines and other harvesters are not efficient. Deterministic pre-flutter, incipient flutter and post-critical vibrations of the apparatus have been already explored in a previous study. This work aims to further investigate the aeroelastic behavior of the “flapping foil” by examining the effect of turbulence, random experimental error and modeling simplifications of the aeroelastic forces. The analysis is conducted at incipient flutter in the frequency domain using classical unsteady force models. Monte Carlo methods are employed to solve for the probability of incipient flutter speed. Several configurations are considered to improve the efficiency of the energy harvester.more » « less
-
The purpose of this study was to develop a replicable methodology for testing the capabilities and characteristics of a wind turbine blade in a structural re-use application with the specific goal of creating and demonstrating an efficient and commercially viable wind blade pedestrian bridge design. Wind energy experienced a dramatic increase in popularity following the turn of the century and it is now a common source of renewable energy around the world. However, while wind turbines are able to produce clean energy while in service, turbine blades are designed for a fatigue life of only about 20 years. With the difficulty and costs associated with recycling the composite material blades used on the turbines, wind power companies choose to dispose of decommissioned blades in landfills instead. The Re-Wind BladeBridge project aims to promote a more sustainable life cycle for wind power by demonstrating that decommissioned wind turbine blades have the capability to be repurposed as structural elements in bridges. This paper presents an analysis and characterization of a LM 13.4 wind blade from a Nordex N29 turbine, along with a design for a pedestrian bridge using two LM 13.4 wind blades to create a 5-meter span bridge. Software developed by the Re-Wind team called “BladeMachine” was used to generate the engineering properties of the blade at multiple sections along the blade length. Resin burnout tests and mechanical testing in tension and compression were performed to determine the material and mechanical properties of the composite materials in the blade. Additionally, a four-point edgewise bending test was performed on a 4-meter section of the wind blade to evaluate its load carrying behavior. The results of these tests revealed that the LM 13.4 blades are suitable to be re-utilized as girders for a short-span pedestrian bridge. An overview of the design of the BladeBridge currently under construction in County Cork, Ireland is presented, including details on the architectural and structural design processes.more » « less
-
Calotescu, Ileana; Chitez, Adriana; Coşoiu, Costin; Vlăduţ, Alexandru Cezar (Ed.)The paper expands a recently developed model that examines the stochastic stability of a torsional-flutter-based harvester. The new model accounts for both uncertainty in the aeroelastic loads and wind turbulence in the incoming flow. Since the blade-airfoil is three-dimensional, three-dimensional flow effect are simulated through η3D, i.e., a reduction parameter of the static lift slope, dependent on the aspect ratio of the apparatus. The first uncertainty source is a byproduct of the modelling simplifications of the aeroelastic loads, which are described by indicial function approach and ideally applicable to two-dimensional flow. The second source is the flow turbulence that operates by modifying the Parametric stochastic perturbations are applied to the parameter describing the memory-effect of the load, simulating “imperfections” in the load measurement and approximate description through η3D. Stochastic flutter stability is examined by mean squares. Post-critical states are also discussed.more » « less
An official website of the United States government

