skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: BlAnC: Blockchain-based Anonymous and Decentralized Credit Networks
Distributed credit networks, such as Ripple [18] and Stellar [21], are becoming popular as an alternative means for financial transactions. However, the current designs do not preserve user privacy or are not truly decentralized. In this paper, we explore the creation of a distributed credit network that preserves user and transaction privacy and unlinkability. We propose BlAnC, a novel, fully decentralized blockchain-based credit network where credit transfer between a sender-receiver pair happens on demand. In BlAnC, multiple concurrent transactions can occur seamlessly, and malicious network actors that do not follow the protocols and/or disrupt operations can be identified efficiently. We perform security analysis of our proposed protocols in the universal composability framework to demonstrate its strength, and discuss how our network handles operational dynamics. We also present preliminary experiments and scalability analyses.  more » « less
Award ID(s):
1757207 1800088
PAR ID:
10088716
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
In Ninth ACM Conference on Data and Application Security and Privacy (CODASPY ’19)
Page Range / eLocation ID:
339 to 350
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    In this paper, we propose a technique for rebalancing link weights in decentralized credit networks. Credit networks are peer-to-peer trust-based networks that enable fast and inexpensive cross-currency transactions compared to traditional bank wire transfers. Although researchers have studied security of transactions and privacy of users of such networks, and have invested significant efforts into designing efficient routing algorithms for credit networks, comparatively little work has been done in the area of replenishing credit links of users in the network. This is achieved by a process called rebalancing that enables a poorly funded user to create incoming as well as outgoing credit links. We propose a system where a user with zero or no link weights can create incoming links with existing, trusted users in the network, in a procedure we call balance transfer, followed by creating outgoing links to existing or new users that would like to join the network, a process we call bailout. Both these processes together constitute our proposed rebalancing mechanism. 
    more » « less
  2. Pardalos, Panos ; Kotsireas, Ilias ; Guo, Yike ; Knottenbelt, William (Ed.)
    We propose a decentralized finance (DeFi) survival analysis approach for discovering and characterizing user behavior and risks in lending protocols. We demonstrate how to gather and prepare DeFi transaction data for survival analysis. We demonstrate our approach using transactions in AAVE, one of the largest lending protocols. We develop a DeFi survival analysis pipeline which first prepares transaction data for survival analysis through the selection of different index events (or transactions) and associated outcome events. Then we apply survival analysis statistical and visualization methods such as median survival times, Kaplan–Meier survival curves, and Cox hazard regression to gain insights into usage patterns and risks within the protocol. We show how by varying the index and outcome events, we can utilize DeFi survival analysis to answer three different questions. What do users do after a deposit? How long until borrows are first repaid or liquidated? How does coin type influence liquidation risk? The proposed DeFi survival analysis can easily be generalized to other DeFi lending protocols. By defining appropriate index and outcome events, DeFi survival analysis can be applied to any cryptocurrency protocol with transactions. 
    more » « less
  3. Patients often have their healthcare data stored in centralized systems, leading to challenges when reconciling or consolidating their data across providers due to centralized databases that store patient identities. The challenges disrupt the flow of patient care where time is sensitive for both patients and providers. Decentralized technologies have enabled a new identity model–Self-Sovereign Identity (SSI)–that grants individuals the right to freely control, access, and share their own data. This work proposes a system that achieves SSI in a semi-permissioned blockchain network using an open protocol as the certificate of authority and several guidelines for securely handling transactions in the network. Open protocols like Keccak can grant access to a permission-based network such as Hyperledger Fabric. The network architecture ensures data security and privacy through mechanisms of multi-signature transactions and guidelines for storing transactions locally, making this architecture ideal for privacy-centered use cases, such as healthcare data-sharing applications. The ultimate goal is to give patients full control over their identity and other data derived from their identity within a semi-permissioned network. 
    more » « less
  4. Public blockchains have spurred the growing popularity of decentralized transactions and smart contracts, especially on the financial market. However, public blockchains exhibit their limitations on the transaction throughput, storage availability, and compute capacity. To avoid transaction gridlock, public blockchains impose large fees and per-block resource limits, making it difficult to accommodate the ever-growing high transaction demand. Previous research endeavors to improve the scalability and performance of blockchain through various technologies, such as side-chaining, sharding, secured off-chain computation, communication network optimizations, and efficient consensus protocols. However, these approaches have not attained a widespread adoption due to their inability in delivering a cloud-like performance, in terms of the scalability in transaction throughput, storage, and compute capacity. In this work, we determine that the major obstacle to public blockchain scalability is their underlying unstructured P2P networks. We further show that a centralized network can support the deployment of decentralized smart contracts. We propose a novel approach for achieving scalable decentralization: instead of trying to make blockchain scalable, we deliver decentralization to already scalable cloud by using an Ethereum smart contract. We introduce Blockumulus, a framework that can deploy decentralized cloud smart contract environments using a novel technique called overlay consensus. Through experiments, we demonstrate that Blockumulus is scalable in all three dimensions: computation, data storage, and transaction throughput. Besides eliminating the current code execution and storage restrictions, Blockumulus delivers a transaction latency between 2 and 5 seconds under normal load. Moreover, the stress test of our prototype reveals the ability to execute 20,000 simultaneous transactions under 26 seconds, which is on par with the average throughput of worldwide credit card transactions. 
    more » « less
  5. The emerging decentralized financial ecosystem (DeFi) is comprised of numerous protocols, one type being lending protocols. People make transactions in lending protocols, each of which is attributed to a specific blockchain address which could represent an externally-owned account (EOA) or a smart contract. Using Aave, one of the largest lending protocols, we summarize the transactions made by each address in each quarter from January 1, 2021, through December 31, 2022. We cluster these quarterly summaries to identify and name common patterns of quarterly behavior in Aave. We then use these clusters to glean insights into the dominant behaviors in Aave. We show that there are three kinds of keepers, i.e., a specific type of users tasked with the protocol’s governance, but only one kind of keeper finds consistent success in making profits from liquidations. We identify the largest-scale accounts in Aave and the highest-risk kinds of behavior on the platform. Additionally, we use the temporal aspect of the clusters to track how common behaviors change through time and how usage has shifted in the wake of major events that impacted the crypto market, and we show that there seem to be problems with user retention in Aave as many of the addresses that perform transactions do not remain in the market for long. 
    more » « less