skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Multiple Granularity Online Control of Cloudlet Networks for Edge Computing
Operating distributed cloudlets at optimal cost is nontrivial when facing not only the dynamic and unpredictable resource prices and user requests, but also the low efficiency of today's immature cloudlet infrastructures. We propose to control cloudlet networks at multiple granularities - fine-grained control of servers inside cloudlets and coarse-grained control of cloudlets themselves. We model this problem as a mixed-integer nonlinear program with the switching cost over time. To solve this problem online, we firstly linearize, "regularize", and decouple it into a series of one-shot subproblems that we solve at each corresponding time slot, and afterwards we design an iterative, dependent rounding framework using our proposed randomized pairwise rounding algorithm to convert the fractional control decisions into the integral ones at each time slot. Via rigorous theoretical analysis, we exhibit our approach's performance guarantee in terms of the competitive ratio and the multiplicative integrality gap towards the offline optimal integral decisions. Extensive evaluations with real-world data confirm the empirical superiority of our approach over the single granularity server control and the state-of-the-art algorithms.  more » « less
Award ID(s):
1703014
PAR ID:
10088814
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
2018 15th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON)
Page Range / eLocation ID:
1 to 9
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Operating distributed Scrubbing Centers (SCs) to mitigate massive Distributed Denial of Service (DDoS) traffic in large-scale networks faces critical challenges. The operator needs to determine the diversion rule installation and elimination in the networks, as well as the scrubbing resource activation and revocation in the SCs, while minimizing the long-term cost and the cumulative decision-switching penalty without knowing the exact amount of the malicious traffic. We model and formulate this problem as an online nonlinear integer program. In contrast to many other online problems where future inputs are unknown but at least current inputs are known, a key new challenge here is that even part of the current inputs are unknown when decisions are made. To learn the best decisions online, we transform our problem via a gap-preserving approximation into an online optimization problem with only the known inputs, which is further relaxed and decoupled into a series of one-shot convex programs solvable in individual time slots. To overcome the intractability, we design a progressive rounding algorithm to convert fractional decisions into integral ones without violating the constraints. We characterize the competitive ratio of our approach as a function of the key parameters of our problem. We conduct evaluations using real-world data and confirm our algorithms’ superiority over de facto practices and state-of-the-art methods 
    more » « less
  2. With the rapid advancement of edge computing and network function virtualization, it is promising to provide flexible and low-latency network services at the edge. However, due to the vulnerability of edge services and the volatility of edge computing system states, i.e., service request rates, failure rates, and resource prices, it is challenging to minimize the online service cost while providing the availability guarantee. This paper considers the problem of online virtual network function backup under availability constraints (OVBAC) for cost minimization in edge environments. We formulate the problem based on the characteristics of the volatility system states derived from real-world data and show the hardness of the formulated problem. We use an online backup deployment scheme named Drift-Plus-Penalty (DPP) with provable near-optimal performance for the AVBAC problem. In particular, DPP needs to solve an integer programming problem at the beginning of each time slot. We propose a dynamic programming-based algorithm that can optimally solve the problem in pseudo-polynomial time. Extensive real-world data-driven simulations demonstrate that DPP significantly outperforms popular baselines used in practice. 
    more » « less
  3. null (Ed.)
    Edge computing is an attractive architecture to efficiently provide compute resources to many applications that demand specific QoS requirements. The edge compute resources are in close geographical proximity to where the applications’ data originate from and/or are being supplied to, thus avoiding unnecessary back and forth data transmission with a data center far away. This paper describes a federated edge computing system in which compute resources at multiple edge sites are dynamically aggregated together to form distributed super-cloudlets and best respond to varying application-driven loads. In its simplest form a super-cloudlet consists of compute resources available at two edge computing sites or cloudlets that are (temporarily) interconnected by dedicated optical circuits deployed to enable low-latency and high-rate data exchanges. A super-cloudlet architecture is experimentally demonstrated over the largest public OpenROADM optical network testbed up to date consisting of commercial equipment from six suppliers. The software defined networking (SDN) PROnet Orchestrator is upgraded to both concurrently manage the resources offered by the optical network equipment, compute nodes, and associated Ethernet switches and achieve three key functionalities of the proposed super-cloudlet architecture, i.e., service placement, auto-scaling, and offloading. 
    more » « less
  4. This paper proposes a new formulation for the school bus scheduling problem (SBSP), which optimizes school start times and bus operation times to minimize transportation cost. The goal is to minimize the number of buses to serve all bus routes such that each route arrives in a time window before school starts. We show that introducing context-specific features, common in many school districts, can lead to a new time-indexed integer linear programming (ILP) formulation. Based on a strengthened version of the linear relaxation of the ILP, we develop a dependent randomized rounding algorithm that yields near-optimal solutions for large-scale problem instances. The efficient formulation and solution approach enable quick generation of multiple solutions to facilitate strategic planning, which we demonstrate with data from two public school districts in the United States. We also generalize our methodologies to solve a robust version of the SBSP. 
    more » « less
  5. Virtual Reality (VR), together with the network infrastructure, can provide an interactive and immersive experience for multiple users simultaneously and thus enables collaborative VR applications (e.g., VR-based classroom). However, the satisfactory user experience requires not only high-resolution panoramic image rendering but also extremely low latency and seamless user experience. Besides, the competition for limited network resources (e.g., multiple users share the total limited bandwidth) poses a significant challenge to collaborative user experience, in particular under the wireless network with time-varying capacities. While existing works have tackled some of these challenges, a principled design considering all those factors is still missing. In this paper, we formulate a combinatorial optimization problem to maximize the Quality of Experience (QoE), defined as the linear combination of the quality, the average VR content delivery delay, and variance of the quality over a finite time horizon. In particular, we incorporate the influence of imperfect motion prediction when considering the quality of the perceived contents. However, the optimal solution to this problem can not be implemented in real-time since it relies on future decisions. Then, we decompose the optimization problem into a series of combinatorial optimization in each time slot and develop a low-complexity algorithm that can achieve at least 1/2 of the optimal value. Despite this, the trace-based simulation results reveal that our algorithm performs very close to the optimal offline solution. Furthermore, we implement our proposed algorithm in a practical system with commercial mobile devices and demonstrate its superior performance over state-of-the-art algorithms. We open-source our implementations on https://github.com/SNeC-Lab-PSU/ICDCS-CollaborativeVR. 
    more » « less