Finding an approximate second-order stationary point (SOSP) is a well-studied and fundamental problem in stochastic nonconvex optimization with many applications in machine learning. However, this problem is poorly understood in the presence of outliers, limiting the use of existing nonconvex algorithms in adversarial settings. In this paper, we study the problem of finding SOSPs in the strong contamination model, where a constant fraction of datapoints are arbitrarily corrupted. We introduce a general framework for efficiently finding an approximate SOSP with dimension-independent accuracy guarantees, using $$\widetilde{O}({D^2}/{\epsilon})$$ samples where $$D$$ is the ambient dimension and $$\epsilon$$ is the fraction of corrupted datapoints. As a concrete application of our framework, we apply it to the problem of low rank matrix sensing, developing efficient and provably robust algorithms that can tolerate corruptions in both the sensing matrices and the measurements. In addition, we establish a Statistical Query lower bound providing evidence that the quadratic dependence on $$D$$ in the sample complexity is necessary for computationally efficient algorithms.
more »
« less
Being Robust (in High Dimensions) Can Be Practical
Robust estimation is much more challenging in high-dimensions than it is in one-dimension: Most techniques either lead to intractable optimization problems or estimators that can tolerate only a tiny fraction of errors. Recent work in theoretical computer science has shown that, in appropriate distributional models, it is possible to robustly estimate the mean and covariance with polynomial time algorithms that can tolerate a constant fraction of corruptions, independent of the dimension. However, the sample and time complexity of these algorithms is prohibitively large for high-dimensional applications. In this work, we address both of these issues by establishing sample complexity bounds that are optimal, up to logarithmic factors, as well as giving various refinements that allow the algorithms to tolerate a much larger fraction of corruptions. Finally, we show on both synthetic and real data that our algorithms have state-of-the-art performance and suddenly make high-dimensional robust estimation a realistic possibility.
more »
« less
- Award ID(s):
- 1652862
- PAR ID:
- 10088874
- Date Published:
- Journal Name:
- Proceedings of the 34th International Conference on Machine Learning, PMLR
- Page Range / eLocation ID:
- 999-1008
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Finding an approximate second-order stationary point (SOSP) is a well-studied and fundamental problem in stochastic nonconvex optimization with many applications in machine learning. However, this problem is poorly understood in the presence of outliers, limiting the use of existing nonconvex algorithms in adversarial settings. In this paper, we study the problem of finding SOSPs in the strong contamination model, where a constant fraction of datapoints are arbitrarily corrupted. We introduce a general framework for efficiently finding an approximate SOSP with dimension-independent accuracy guarantees, using O(D^2/\eps) samples where D is the ambient dimension and ǫ is the fraction of corrupted datapoints. As a concrete application of our framework, we apply it to the problem of low rank matrix sensing, developing efficient and provably robust algorithms that can tolerate corruptions in both the sensing matrices and the measurements. In addition, we establish a Statistical Query lower bound providing evidence that the quadratic dependence on D in the sample complexity is necessary for computationally efficient algorithms.more » « less
-
We study high-dimensional sparse estimation tasks in a robust setting where a constant fraction of the dataset is adversarially corrupted. Specifically, we focus on the fundamental problems of robust sparse mean estimation and robust sparse PCA. We give the first practically viable robust estimators for these problems. In more detail, our algorithms are sample and computationally efficient and achieve near-optimal robustness guarantees. In contrast to prior provable algorithms which relied on the ellipsoid method, our algorithms use spectral techniques to iteratively remove outliers from the dataset. Our experimental evaluation on synthetic data shows that our algorithms are scalable and significantly outperform a range of previous approaches, nearly matching the best error rate without corruptions.more » « less
-
We consider the question of Gaussian mean testing, a fundamental task in high-dimensional distribution testing and signal processing, subject to adversarial corruptions of the samples. We focus on the relative power of different adversaries, and show that, in contrast to the common wisdom in robust statistics, there exists a strict separation between adaptive adversaries (strong contamination) and oblivious ones (weak contamination) for this task. Specifically, we resolve both the information-theoretic and computational landscapes for robust mean testing. In the exponential-time setting, we establish the tight sample complexity of testing N(0,I) against N(αv,I), where ∥v∥2=1, with an ε-fraction of adversarial corruptions, to be Θ~(max(d√α2,dε3α4,min(d2/3ε2/3α8/3,dεα2))) while the complexity against adaptive adversaries is Θ~(max(d√α2,dε2α4)) which is strictly worse for a large range of vanishing ε,α. To the best of our knowledge, ours is the first separation in sample complexity between the strong and weak contamination models. In the polynomial-time setting, we close a gap in the literature by providing a polynomial-time algorithm against adaptive adversaries achieving the above sample complexity Θ~(max(d−−√/α2,dε2/α4)), and a low-degree lower bound (which complements an existing reduction from planted clique) suggesting that all efficient algorithms require this many samples, even in the oblivious-adversary setting.more » « less
-
We consider the question of Gaussian mean testing, a fundamental task in high-dimensional distribution testing and signal processing, subject to adversarial corruptions of the samples. We focus on the relative power of different adversaries, and show that, in contrast to the common wisdom in robust statistics, there exists a strict separation between adaptive adversaries (strong contamination) and oblivious ones (weak contamination) for this task. Specifically, we resolve both the information-theoretic and computational landscapes for robust mean testing. In the exponential-time setting, we establish the tight sample complexity of testing N(0,I) against N(αv,I), where ∥v∥2=1, with an ε-fraction of adversarial corruptions, to be Θ~(max(d−−√α2,dε3α4,min(d2/3ε2/3α8/3,dεα2))), while the complexity against adaptive adversaries is Θ~(max(d−−√α2,dε2α4)), which is strictly worse for a large range of vanishing ε,α. To the best of our knowledge, ours is the first separation in sample complexity between the strong and weak contamination models. In the polynomial-time setting, we close a gap in the literature by providing a polynomial-time algorithm against adaptive adversaries achieving the above sample complexity Θ~(max(d−−√/α2,dε2/α4)), and a low-degree lower bound (which complements an existing reduction from planted clique) suggesting that all efficient algorithms require this many samples, even in the oblivious-adversary setting.more » « less