skip to main content


Title: Trans-Pacific ENSO teleconnections pose a correlated risk to agriculture
The El Niño Southern Oscillation (ENSO) is a major source of interannual climate variability. ENSO life cycles and the associated teleconnections evolve over multiple years at a global scale. This analysis is the first attempt to characterize the structure of the risk posed by trans-Pacific ENSO teleconnections to crop production in the greater Pacific Basin region. In this analysis we identify the large-scale atmospheric dynamics of ENSO teleconnections that affect heat and moisture stress during the growing seasons of maize, wheat and soy. We propose a coherent framework for understanding how trans-Pacific ENSO teleconnections pose a correlated risk to crop yields in major agricultural belts of the Americas, Australia and China over the course of an ENSO life cycle by using observations and a multi-model ensemble of climate anomalies during crop flowering seasons. Trans-Pacific ENSO teleconnections are often (but not always) offsetting between major producing regions in the Americas and those in northern China or Australia. El Niños tend to create good maize and soybean growing conditions in the US and southeast South America, but poor growing conditions in northern China, southern Mexico and the Cerrado in Brazil. The opposite is true during La Niña. Wheat growing conditions in southeast South America generally have the opposite sign of those in Australia. Furthermore, multi-year La Niñas can force multi-year growing season anomalies in Argentina and Australia. Most ENSO teleconnections relevant for crop flowering seasons are the result of a single trans-Pacific circulation anomaly that develops in boreal summer and persists through the following spring. During the late summer and early fall of a developing ENSO event, the tropical Pacific forces an atmospheric anomaly in the northern midlatitudes that spans the Pacific from northern China to North America and in the southern midlatitudes from Australia to southeast South America. This anomaly directly links the soybean and maize growing seasons of the US, Mexico and China and the wheat growing seasons of Argentina, southern Brazil and Australia. The ENSO event peaks in boreal winter, when the atmospheric circulation anomalies intensify and affect maize and soybeans in southeast South America. As the event decays, the ENSO-induced circulation anomalies persist through the wheat flowering seasons in China and the US.  more » « less
Award ID(s):
1657209
NSF-PAR ID:
10088999
Author(s) / Creator(s):
Date Published:
Journal Name:
Agricultural and forest meteorology
Volume:
262
ISSN:
0168-1923
Page Range / eLocation ID:
289 - 309
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The summer North American dipole (NAD) is a pattern of climate variability linked to variations in boreal forest seed production and migration of seed-eating birds. This is a modeling investigation of two teleconnections identified as drivers of the NAD in prior observational work: 1) tropically sourced atmospheric Rossby waves associated with anomalies in the phase distribution of the Madden–Julian oscillation (MJO) (i.e., phases 1 and 6 are anomalously prominent), and 2) a pan-Pacific atmospheric Rossby wave linked to East Asian monsoonal (EAM) convection. Sea surface temperature (SST) boundary forcing experiments were conducted with the Community Earth System Model 2 (CESM2) to trigger convection patterns that align with those observed during EAM and nonuniform phase distributions of MJO. For the EAM case, an El Niño–like SST dipole pattern combined with cool southern Japan SST forcing produced a convection and jet stream shift anomaly over East Asia and the northern Pacific with a positive NAD pattern downstream over North America, similar to the observed pattern when precipitation over East Asia (PEA) is relatively high. A companion experiment with only ENSO-like SST forcing also produced the NAD but featured a different structure over the Eurasian continent with a response resembling the summer east Atlantic (SEA) pattern over eastern North America and the eastern Atlantic. Simulation results suggest that the southern Japan SST forcing region has a secondary importance in triggering the NAD, producing only a somewhat NAD-like pattern by itself and only slightly improving the NAD produced by ENSO-like forcing. Simulations using SST forcing to induce seasonal convection anomalies with spatial patterns similar to anomalously frequent occurrence of MJO phase 1 (phase 6) produced circulation response patterns resembling the positive NAD (negative NAD).

     
    more » « less
  2. null (Ed.)
    Global hydroclimatic changes from 1950 to 2018 are analyzed using updated data of land precipitation, streamfow, and an improved form of the Palmer Drought Severity Index. The historical changes are then compared with climate model-simulated response to external forcing to determine how much of the recent change is forced response. It is found that precipitation has increased from 1950 to 2018 over mid-high latitude Eurasia, most North America, Southeast South America, and Northwest Australia, while it has decreased over most Africa, eastern Australia, the Mediterranean region, the Middle East, and parts of East Asia, central South America, and the Pacifc coasts of Canada. Streamfow records largely confrm these precipitation changes. The wetting trend over Northwest Australia and Southeast South America is most pronounced in austral summer while the drying over Africa and wetting trend over mid-high latitude Eurasia are seen in all seasons. Coupled with the drying caused by rising surface temperatures, these precipitation changes have greatly increased the risk of drought over Africa, southern Europe, East Asia, eastern Australia, Northwest Canada, and southern Brazil. Global land precipitation and continental freshwater discharge show large interannual and inter-decadal variations, with negative anomalies during El Niño and following major volcanic eruptions in 1963, 1982, and 1991; whereas their decadal variations are correlated with the Interdecadal Pacifc Oscillation (IPO) with IPO’s warm phase associated with low land precipitation and continental discharge. The IPO and Atlantic multidecadal variability also dominate multidecadal variations in land aridity, accounting for 90% of the multidecadal variance. CMIP5 multi-model ensemble mean shows decreased precipitation and runoff and increased risk of drought during 1950–2018 over Southwest North America, Central America, northern and central South America (including the Amazon), southern and West Africa, the Mediterranean region, and Southeast Asia; while the northern mid-high latitudes, Southeast South America, and Northwest Australia see increased precipitation and runoff. The consistent spatial patterns between the observed changes and the model-simulated response suggest that many of the observed drying and wetting trends since 1950 may have resulted at least partly from historical external forcing. However, the drying over Southeast Asia and wetting over Northwest Australia are absent in the 21st century projections. 
    more » « less
  3. Large-scale modes of climate variability can force widespread crop yield anomalies and are therefore often presented as a risk to food security. We quantify how modes of climate variability contribute to crop production variance. We find that the El Niño Southern Oscillation (ENSO), the Indian Ocean Dipole (IOD), tropical Atlantic variability (TAV), and the North Atlantic Oscillation (NAO) together account for 18, 7, and 6% of globally aggregated maize, soybean, and wheat production variability, respectively. The lower fractions of global-scale soybean and wheat production variability result from substantial but offsetting climate-forced production anomalies. All climate modes are important in at least one region studied. In 1983, ENSO, the only mode capable of forcing globally synchronous crop failures, was responsible for the largest synchronous crop failure in the modern historical record. Our results provide the basis for monitoring, and potentially predicting, simultaneous crop failures. 
    more » « less
  4. Abstract

    In situ observation networks and reanalyses products of the state of the atmosphere and upper ocean show well-defined, large-scale patterns of coupled climate variability on time scales ranging from seasons to several decades. We summarize these phenomena and their physics, which have been revealed by analysis of observations, by experimentation with uncoupled and coupled atmosphere and ocean models with a hierarchy of complexity, and by theoretical developments. We start with a discussion of the seasonal cycle in the equatorial tropical Pacific and Atlantic Oceans, which are clearly affected by coupling between the atmosphere and the ocean. We then discuss the tropical phenomena that only exist because of the coupling between the atmosphere and the ocean: the Pacific and Atlantic meridional modes, the El Niño–Southern Oscillation (ENSO) in the Pacific, and a phenomenon analogous to ENSO in the Atlantic. For ENSO, we further discuss the sources of irregularity and asymmetry between warm and cold phases of ENSO, and the response of ENSO to forcing. Fundamental to variability on all time scales in the midlatitudes of the Northern Hemisphere are preferred patterns of uncoupled atmospheric variability that exist independent of any changes in the state of the ocean, land, or distribution of sea ice. These patterns include the North Atlantic Oscillation (NAO), the North Pacific Oscillation (NPO), and the Pacific–North American (PNA) pattern; they are most active in wintertime, with a temporal spectrum that is nearly white. Stochastic variability in the NPO, PNA, and NAO force the ocean on days to interannual times scales by way of turbulent heat exchange and Ekman transport, and on decadal and longer time scales by way of wind stress forcing. The PNA is partially responsible for the Pacific decadal oscillation; the NAO is responsible for an analogous phenomenon in the North Atlantic subpolar gyre. In models, stochastic forcing by the NAO also gives rise to variability in the strength of the Atlantic meridional overturning circulation (AMOC) that is partially responsible for multidecadal anomalies in the North Atlantic climate known as the Atlantic multidecadal oscillation (AMO); observations do not yet exist to adequately determine the physics of the AMO. We review the progress that has been made in the past 50 years in understanding each of these phenomena and the implications for short-term (seasonal-to-interannual) climate forecasts. We end with a brief discussion of advances of things that are on the horizon, under the rug, and over the rainbow.

     
    more » « less
  5. A limited nuclear war between India and Pakistan could ignite fires large enough to emit more than 5 Tg of soot into the stratosphere. Climate model simulations have shown severe resulting climate perturbations with declines in global mean temperature by 1.8 °C and precipitation by 8%, for at least 5 y. Here we evaluate impacts for the global food system. Six harmonized state-of-the-art crop models show that global caloric production from maize, wheat, rice, and soybean falls by 13 (±1)%, 11 (±8)%, 3 (±5)%, and 17 (±2)% over 5 y. Total single-year losses of 12 (±4)% quadruple the largest observed historical anomaly and exceed impacts caused by historic droughts and volcanic eruptions. Colder temperatures drive losses more than changes in precipitation and solar radiation, leading to strongest impacts in temperate regions poleward of 30°N, including the United States, Europe, and China for 10 to 15 y. Integrated food trade network analyses show that domestic reserves and global trade can largely buffer the production anomaly in the first year. Persistent multiyear losses, however, would constrain domestic food availability and propagate to the Global South, especially to food-insecure countries. By year 5, maize and wheat availability would decrease by 13% globally and by more than 20% in 71 countries with a cumulative population of 1.3 billion people. In view of increasing instability in South Asia, this study shows that a regional conflict using <1% of the worldwide nuclear arsenal could have adverse consequences for global food security unmatched in modern history. 
    more » « less