skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Synthesis of Bisheteroarylalkanes by Heteroarylboration: Development and Application of a Pyridylidene–Copper Complex
Abstract The development of pyridylidene‐Cu‐complexes and their application in Cu/Pd‐catalyzed heteroarylboration of alkenylheteroarenes is reported. The significance of 1,1′‐heteroarylalkanes as building blocks for drug discovery, as well as the straightforward and modular sequence to prepare the pyridylidene‐Cu‐complexes, makes this catalyst and it applications attractive for chemical synthesis. Furthermore, chiral variants of the pyridylidene‐Cu‐complexes have been prepared and utilized in the enantioselective arylboration of E‐alkenes, further demonstrating the value and potential of this class of catalysts.  more » « less
Award ID(s):
1554760
PAR ID:
10089195
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
58
Issue:
18
ISSN:
1433-7851
Page Range / eLocation ID:
p. 6048-6052
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Understanding the electronic structures of high‐valent metal complexes aids the advancement of metal‐catalyzed cross coupling methodologies. A prototypical complex with formally high valency is [Cu(CF3)4](1), which has a formal Cu(III) oxidation state but whose physical analysis has led some to a Cu(I) assignment in an inverted ligand field model. Recent examinations of1by X‐ray spectroscopies have led previous authors to contradictory conclusions, motivating the re‐examination of its X‐ray absorption profile here by a complementary method, resonant diffraction anomalous fine structure (DAFS). From analysis of DAFS measurements for a series of seven mononuclear Cu complexes including1, here it is shown that there is a systematic trifluoromethyl effect on X‐ray absorption that blue shifts the resonant Cu K‐edge energy by 2–3 eV per CF3, completely accounting for observed changes in DAFS profiles between formally Cu(III) complexes like1and formally Cu(I) complexes like (Ph3P)3CuCF3(3). Thus, in agreement with the inverted ligand field model, the data presented herein imply that1is best described as containing a Cu(I) ion with dncount approaching 10. 
    more » « less
  2. To increase the number of potential materials for application as MRI contrast agents, several Cu(II) complexes were synthesized. Cu(II) complexes were chosen because they are less expensive in comparison with the presently used Gd(III), Mn(II) and other agents. Pyridine-2-carboximidamide (1), pyrimidine-2-carboximidamide (2) and pyrazole-2-carboximidamide (3) in the form of different salts along with CuCl2 and NaCl or CuBr2 and NaBr were used to obtain four Cu(II) complexes: dichloro-pyrimidine-2-carboximidamide copper(II) (4), dibromo-pyrimidine-2-carboximidamide copper(II) (5), dichloro-pirazole-2-carboximidamide copper(II) (6), and dibromo-pirazole-2-carboximidamide copper(II) (7). X-ray diffraction analysis revealed that molecular complexes 4–7 contain square planar coordinated Cu(II) atoms and their structures are very similar, as well as their packing in crystals, which allows us to consider them isomorphs. The same synthetic approach to complex preparation where NaCl or NaBr was not used brought us to the formation of dimeric complexes μ-chloro{chloro(pyridine-2-carboximidamide)copper(II)} (8) and μ-chloro{chloro(pyrimidine-2-carboximidamide)copper(II)} (9). In the dimeric complexes, two fragments which were the same as in monomeric complexes 4–7 are held together by bridging Cu-Cl bonds making the coordination of Cu equal to 5 (square pyramid). In dimeric complexes, axial Cu-Cl bonds are 2.7360 and 2.854 Å. These values are Cu-Cl bonds on the edge of existence according to statistical data from CSD. Synthesized complexes were characterized by IR spectroscopy, TGA, PXRD, EPR, and quantum chemical calculations. The higher thermal stability of monomer pyrimidine-based complexes with Cl and Br substituents makes them more prospective for further studies. 
    more » « less
  3. Abstract The chemistry of copper (Cu) in seawater is well known to be dominated by complexation with organic ligands. The prevailing paradigm is that Cu forms strong but labile complexes. Recently, a novel procedure revealed that only a small fraction of dissolved Cu exists as labile complexes. The majority is present as a fraction that is relatively inert on timescales of weeks or more and probably does not participate in coordination exchange reactions, including biologically mediated processes. Samples collected from the 2018 GEOTRACES GP15 cruise show that throughout the interior of the Pacific Ocean, this inert fraction comprises about 90% of the dissolved Cu. Labile Cu accumulates in surface waters, probably arising from photochemical decomposition of the inert fraction. There is also a modest accumulation of labile Cu near deep sea sediments and along the Alaskan shelf and slope. The results have important implications for Cu transport and biological availability. Inert Cu may influence Cu transport throughout the water column and contribute to the linear increase in Cu with depth, a distribution which is hard to explain for a biologically active trace metal. The origins of inert Cu are unknown. It may be produced slowly within the water column on the timescale of meridional overturning circulation. In the Columbia River, between 92% and 98% of the dissolved Cu is in the inert fraction, suggesting a possible terrestrial source of inert Cu to the ocean. 
    more » « less
  4. Abstract In this research article, we describe the synthesis and characterization of mononuclear and dinuclear Cu complexes bound by a family of tridentate redox‐active ligands with tunable H‐bonding donors. The mononuclear Cu‐anion complexes were oxidized to the corresponding “high‐valent” intermediates by oxidation of the redox‐active ligand. These species were capable of oxidizing phenols with weak O−H bonds via H‐atom abstraction. Thermodynamic analysis of the H‐atom abstractions, which included reduction potential measurements, pKadetermination and kinetic studies, revealed that modification of the anion coordinated to the Cu and changes in the H‐bonding donor did not lead to major differences in the reactivity of the “high‐valent” CuY complexes (Y: hydroxide, phenolate and acetate), which indicated that the tridentate ligand scaffold acts as the H+and eacceptor. 
    more » « less
  5. Abstract Homometallic copper complexes with alkenylidene ligands are discussed as intermediates in catalysis but the isolation of such complexes has remained elusive. Herein, we report the structural characterization of copper complexes with bridging and terminal alkenylidene ligands. The compounds were obtained by irradiation of CuIcomplexes with N‐heterocyclic diazoolefin ligands. The complex with a terminal alkenylidene ligand required isolation in a crystalline matrix, and its structural characterization was enabled byin crystallophotolysis at low temperature. 
    more » « less