skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Copper Complexes with Diazoolefin Ligands and their Photochemical Conversion into Alkenylidene Complexes
Abstract Homometallic copper complexes with alkenylidene ligands are discussed as intermediates in catalysis but the isolation of such complexes has remained elusive. Herein, we report the structural characterization of copper complexes with bridging and terminal alkenylidene ligands. The compounds were obtained by irradiation of CuIcomplexes with N‐heterocyclic diazoolefin ligands. The complex with a terminal alkenylidene ligand required isolation in a crystalline matrix, and its structural characterization was enabled byin crystallophotolysis at low temperature.  more » « less
Award ID(s):
1834750
PAR ID:
10386475
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
62
Issue:
4
ISSN:
1433-7851
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The copper(I), silver(I), and gold(I) metals bind π‐ligands by σ‐bonding and π‐back bonding interactions. These interactions were investigated using bidentate ancillary ligands with electron donating and withdrawing substituents. The π‐ligands span from ethylene to larger terminal and internal alkenes and alkynes. Results of X‐ray crystallography, NMR, and IR spectroscopy and gas phase experiments show that the binding energies increase in the order Ag 
    more » « less
  2. Abstract Silicon‐mediated fluoride abstraction is demonstrated as a means of generating the first fluorido‐cyanido transition metal complexes. This new synthetic approach is exemplified by the synthesis and characterization of the heteroleptic complexes,trans‐[MIVF4(CN)2]2−(M=Re, Os), obtained from their homoleptic [MIVF6]2−parents. As shown by combined high‐field electron paramagnetic resonance spectroscopy and magnetization measurements, the partial substitution of fluoride by cyanide ligands leads to a marked increase in the magnetic anisotropy oftrans‐[ReF4(CN)2]2−as compared to [ReF6]2−, reflecting the severe departure from an ideal octahedral (Ohpoint group) ligand field. This methodology paves the way toward the realization of new heteroleptic transition metal complexes that may be used as highly anisotropic building‐blocks for the design of high‐performance molecule‐based magnetic materials. 
    more » « less
  3. Abstract With the aim of constructing hydrogen‐bonding networks in synthetic complexes, two new ligands derived fromcis,cis‐1,3,5‐triaminocyclohexane (TACH) have been prepared that feature pendant pyrrole or indole rings as outer‐sphere H‐bond donors. The TACH framework offers a facial arrangement of threeN‐donors, thereby mimicking common coordination motifs in the active sites of nonheme Fe and Cu enzymes. X‐ray structural characterization of a series of CuI‐X complexes (X=F, Cl, Br, NCS) revealed that these neutral ligands (H3LR, R=pyrrole or indole) coordinate in the intended facialN3manner, yielding four‐coordinate complexes with idealizedC3symmetry. The N−H units of the outer‐sphere heterocycles form a hydrogen‐bonding cavity around the axial (pseudo)halide ligand, as verified by crystallographic, spectroscopic, and computational analyses. Treatment of H3Lpyrroleand H3Lindolewith divalent transition metal chlorides (MIICl2, M=Fe, Cu, Zn) causes one heterocycle to deprotonate and coordinate to the M(II) center, giving rise to tetradentate ligands with two remaining outer‐sphere H‐bond donors. Further ligand deprotonation is observed upon reaction with Ni(II) and Cu(II) salts with weakly coordinating counteranions. The reported complexes highlight the versatility of TACH‐based ligands with pendant H‐bond donors, as the resulting scaffolds can support multiple protonation states, coordination geometries, and H‐bonding interactions. 
    more » « less
  4. Abstract In this research article, we describe the synthesis and characterization of mononuclear and dinuclear Cu complexes bound by a family of tridentate redox‐active ligands with tunable H‐bonding donors. The mononuclear Cu‐anion complexes were oxidized to the corresponding “high‐valent” intermediates by oxidation of the redox‐active ligand. These species were capable of oxidizing phenols with weak O−H bonds via H‐atom abstraction. Thermodynamic analysis of the H‐atom abstractions, which included reduction potential measurements, pKadetermination and kinetic studies, revealed that modification of the anion coordinated to the Cu and changes in the H‐bonding donor did not lead to major differences in the reactivity of the “high‐valent” CuY complexes (Y: hydroxide, phenolate and acetate), which indicated that the tridentate ligand scaffold acts as the H+and eacceptor. 
    more » « less
  5. Abstract Oxoiron(IV) units are often implicated as intermediates in the catalytic cycles of non‐heme iron oxygenases and oxidases. The most reactive synthetic analogues of these intermediates are supported by tetradentate tripodal ligands withN‐methylbenzimidazole or quinoline donors, but their instability precludes structural characterization. Herein we report crystal structures of two [FeIV(O)(L)]2+complexes supported by pentadentate ligands incorporating these heterocycles, which show longer average Fe–N distances than the complex with only pyridine donors. These longer distances correlate linearly with log k2′ values for O‐ and H‐atom transfer rates, suggesting that weakening the ligand field increases the electrophilicity of the Fe=O center. The sterically bulkier quinoline donors are also found to tilt the Fe=O unit away from a linear N‐Fe=O arrangement by 10°. 
    more » « less