skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Cu Exists Predominantly as Kinetically Inert Complexes Throughout the Interior of the Equatorial and North Pacific Ocean
Abstract The chemistry of copper (Cu) in seawater is well known to be dominated by complexation with organic ligands. The prevailing paradigm is that Cu forms strong but labile complexes. Recently, a novel procedure revealed that only a small fraction of dissolved Cu exists as labile complexes. The majority is present as a fraction that is relatively inert on timescales of weeks or more and probably does not participate in coordination exchange reactions, including biologically mediated processes. Samples collected from the 2018 GEOTRACES GP15 cruise show that throughout the interior of the Pacific Ocean, this inert fraction comprises about 90% of the dissolved Cu. Labile Cu accumulates in surface waters, probably arising from photochemical decomposition of the inert fraction. There is also a modest accumulation of labile Cu near deep sea sediments and along the Alaskan shelf and slope. The results have important implications for Cu transport and biological availability. Inert Cu may influence Cu transport throughout the water column and contribute to the linear increase in Cu with depth, a distribution which is hard to explain for a biologically active trace metal. The origins of inert Cu are unknown. It may be produced slowly within the water column on the timescale of meridional overturning circulation. In the Columbia River, between 92% and 98% of the dissolved Cu is in the inert fraction, suggesting a possible terrestrial source of inert Cu to the ocean.  more » « less
Award ID(s):
1840868
PAR ID:
10534767
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
AGU
Date Published:
Journal Name:
Global Biogeochemical Cycles
Volume:
37
Issue:
7
ISSN:
0886-6236
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The seabed and the water column are tightly coupled in shallow coastal environments. Numerical models of seabed‐water interaction provide an alternative to observational studies that require concurrent measurements in both compartments, which are hard to obtain and rarely available. Here, we present a coupled model that includes water column biogeochemistry, seabed diagenesis, sediment transport and hydrodynamics. Our model includes realistic representations of biogeochemical reactions in both seabed and water column, and fluxes at their interface. The model was built on algorithms for seabed‐water exchange in the Regional Ocean Modeling System and expanded to include carbonate chemistry in seabed. The updated model was tested for two sites where benthic flux and porewater concentration measurements were available in the northern Gulf of Mexico hypoxic zone. The calibrated model reproduced the porewater concentration‐depth profiles and benthic fluxes of O2, dissolved inorganic carbon (DIC), TAlk, NO3and NH4. We used the calibrated model to explore the role of benthic fluxes in acidifying bottom water during fair weather and resuspension periods. Under fair weather conditions, model results indicated that bio‐diffusion in sediment, labile material input and sediment porosity have a large control on the importance of benthic flux to bottom water acidification. During resuspension, the model indicated that bottom water acidification would be enhanced due to the sharp increase of the DIC/TAlk ratio of benthic fluxes. To conclude, our model reproduced the seabed‐water column exchange of biologically important solutes and can be used for quantifying the role of benthic fluxes in driving bottom water acidification over continental shelves. 
    more » « less
  2. Marine dissolved organic matter (DOM) contains a complex mixture of small molecules that eludes rapid biological degradation. Spatial and temporal variations in the abundance of DOM reflect the existence of fractions that are removed from the ocean over different time scales, ranging from seconds to millennia. However, it remains unknown whether the intrinsic chemical properties of these organic components relate to their persistence. Here, we elucidate and compare the molecular compositions of distinct DOM fractions with different lability along a water column in the North Atlantic Gyre. Our analysis utilized ultra high resolution Fourier transform ion cyclotron resonance mass spectrometry at 21 T coupled to liquid chromatography and a novel data pipeline developed in CoreMS that generates molecular formula assignments and metrics of isomeric complexity. Clustering analysis binned 14 857 distinct molecular components into groups that correspond to the depth distribution of semilabile, semirefractory, and refractory fractions of DOM. The more labile fractions were concentrated near the ocean surface and contained more aliphatic, hydrophobic, and reduced molecules than the refractory fraction, which occurred uniformly throughout the water column. These findings suggest that processes that selectively remove hydrophobic compounds, such as aggregation and particle sorption, contribute to variable removal rates of marine DOM. 
    more » « less
  3. Abstract Copper (Cu) is a biologically important trace metal for marine plankton, but it is also toxic at high concentrations. Understanding the global distribution of Cu and the processes controlling its cycling in the ocean is important for understanding how the distribution of this important element can respond to climate change. Here, we use available observations of dissolved copper, an artificial neural network, and an ocean circulation inverse model, to derive a global estimate of the three‐dimensional distribution and cycling of dissolved Cu in the ocean. We find that there is net removal by bio‐assimilation and/or scavenging of dissolved Cu in the surface ocean at a rate of ~1.7 Gmol yr−1and that both the concentration and export of dissolved Cu are highest in the Southern Ocean. In the subsurface above the near‐sediment layer, dissolved Cu is removed at a net rate of ~2.4 Gmol yr−1, consistent with scavenging onto sinking particles, contributing to an increase in the flux of particulate Cu with depth. This removal of Cu by scavenging in the interior ocean is balanced by a net near‐sediment source of dissolved Cu, which sustains a gradual increase in the concentration of dissolved Cu with depth. Globally, this net near‐sediment source is estimated at ~2.6 Gmol yr−1in the deep ocean and ~0.8 Gmol yr−1along continental shelves and slopes. Our results suggest an active oceanic dissolved Cu cycle with a mean internal ocean residence time of ~530 years, highlighting the potential for climate‐driven changes in the marine Cu cycle. 
    more » « less
  4. Abstract. Cobalt is the scarcest of metallic micronutrients and displays a complex biogeochemical cycle. This study examines the distribution, chemical speciation, and biogeochemistry of dissolved cobalt during the US North Atlantic GEOTRACES transect expeditions (GA03/3_e), which took place in the fall of 2010 and 2011. Two major subsurface sources of cobalt to the North Atlantic were identified. The more prominent of the two was a large plume of cobalt emanating from the African coast off the eastern tropical North Atlantic coincident with the oxygen minimum zone (OMZ) likely due to reductive dissolution, biouptake and remineralization, and aeolian dust deposition. The occurrence of this plume in an OMZ with oxygen above suboxic levels implies a high threshold for persistence of dissolved cobalt plumes. The other major subsurface source came from Upper Labrador Seawater, which may carry high cobalt concentrations due to the interaction of this water mass with resuspended sediment at the western margin or from transport further upstream. Minor sources of cobalt came from dust, coastal surface waters and hydrothermal systems along the Mid-Atlantic Ridge. The full depth section of cobalt chemical speciation revealed near-complete complexation in surface waters, even within regions of high dust deposition. However, labile cobalt observed below the euphotic zone demonstrated that strong cobalt-binding ligands were not present in excess of the total cobalt concentration there, implying that mesopelagic labile cobalt was sourced from the remineralization of sinking organic matter. In the upper water column, correlations were observed between total cobalt and phosphate, and between labile cobalt and phosphate, demonstrating a strong biological influence on cobalt cycling. Along the western margin off the North American coast, this correlation with phosphate was no longer observed and instead a relationship between cobalt and salinity was observed, reflecting the importance of coastal input processes on cobalt distributions. In deep waters, both total and labile cobalt concentrations were lower than in intermediate depth waters, demonstrating that scavenging may remove labile cobalt from the water column. Total and labile cobalt distributions were also compared to a previously published South Atlantic GEOTRACES-compliant zonal transect (CoFeMUG, GAc01) to discern regional biogeochemical differences. Together, these Atlantic sectional studies highlight the dynamic ecological stoichiometry of total and labile cobalt. As increasing anthropogenic use and subsequent release of cobalt poses the potential to overpower natural cobalt signals in the oceans, it is more important than ever to establish a baseline understanding of cobalt distributions in the ocean. 
    more » « less
  5. This dataset includes the total dissolved, dissolved labile, and soluble nickel concentration results determined in water column samples collected using a trace-metal clean CTD rosette, or an inflatable dinghy, during four cruises in the Bermuda Atlantic Time-series Study (BATS) region in March, May, August, and November 2019. The samples and associated data were collected for the Bermuda Atlantic Iron Time-series (BAIT) project (GEOTRACES Process Study GApr13). Post-cruise sample analyses were performed at the University of South Florida (labile dissolved nickel) and Old Dominion University (dissolved nickel, soluble nickel). 
    more » « less