skip to main content


Title: Concept-Driven Visual Analytics: an Exploratory Study of Model- and Hypothesis-Based Reasoning with Visualizations
Visualization tools facilitate exploratory data analysis, but fall short at supporting hypothesis-based reasoning. We conducted an exploratory study to investigate how visualizations might support a concept-driven analysis style, where users can optionally share their hypotheses and conceptual models in natural language, and receive customized plots depicting the fit of their models to the data. We report on how participants leveraged these unique affordances for visual analysis. We found that a majority of participants articulated meaningful models and predictions, utilizing them as entry points to sensemaking. We contribute an abstract typology representing the types of models participants held and externalized as data expectations. Our findings suggest ways for rearchitecting visual analytics tools to better support hypothesis- and model-based reasoning, in addition to their traditional role in exploratory analysis. We discuss the design implications and reflect on the potential benefits and challenges involved.  more » « less
Award ID(s):
1755611
NSF-PAR ID:
10089461
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
CHI'19: ACM Conference on Human Factors in Computing Systems
ISSN:
1062-9432
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Data visualization provides a powerful way for analysts to explore and make data-driven discoveries. However, current visual analytic tools provide only limited support for hypothesis-driven inquiry, as their built-in interactions and workflows are primarily intended for exploratory analysis. Visualization tools notably lack capabilities that would allow users to visually and incrementally test the fit of their conceptual models and provisional hypotheses against the data. This imbalance could bias users to overly rely on exploratory analysis as the principal mode of inquiry, which can be detrimental to discovery. In this paper, we introduce Visual (dis) Confirmation, a tool for conducting confirmatory, hypothesis-driven analyses with visualizations. Users interact by framing hypotheses and data expectations in natural language. The system then selects conceptually relevant data features and automatically generates visualizations to validate the underlying expectations. Distinctively, the resulting visualizations also highlight places where one's mental model disagrees with the data, so as to stimulate reflection. The proposed tool represents a new class of interactive data systems capable of supporting confirmatory visual analysis, and responding more intelligently by spotlighting gaps between one's knowledge and the data. We describe the algorithmic techniques behind this workflow. We also demonstrate the utility of the tool through a case study. 
    more » « less
  2. Visualizations of data provide a proven method for analysts to explore and make data-driven discoveries. However, current visualization tools provide only limited support for hypothesis-driven analyses, and often lack capabilities that would allow users to visually test the fit of their conceptual models against the data. This imbalance could bias users to overly rely on exploratory visual analysis as the principal mode of inquiry, which can be detrimental to discovery. To address this gap, we propose a new paradigm for ‘concept-driven’ visual analysis. In this style of analysis, analysts share their conceptual models and hypotheses with the system. The system then uses those inputs to drive the generation of visualizations, while providing plots and interactions to explore places where models and data disagree. We discuss key characteristics and design considerations for concept-driven visualizations, and report preliminary findings from a formative study. 
    more » « less
  3. Most mobile health apps employ data visualization to help people view their health and activity data, but these apps provide limited support for visual data exploration. Furthermore, despite its huge potential benefits, mobile visualization research in the personal data context is sparse. This work aims to empower people to easily navigate and compare their personal health data on smartphones by enabling flexible time manipulation with speech. We designed and developed Data@Hand, a mobile app that leverages the synergy of two complementary modalities: speech and touch. Through an exploratory study with 13 long-term Fitbit users, we examined how multimodal interaction helps participants explore their own health data. Participants successfully adopted multimodal interaction (i.e., speech and touch) for convenient and fluid data exploration. Based on the quantitative and qualitative findings, we discuss design implications and opportunities with multimodal interaction for better supporting visual data exploration on mobile devices. 
    more » « less
  4. Many domains require analyst expertise to determine what patterns and data are interesting in a corpus. However, most analytics tools attempt to prequalify “interestingness” using algorithmic approaches to provide exploratory overviews. This overview-driven workflow precludes the use of qualitative analysis methodologies in large datasets. This paper discusses a preliminary visual analytics approach demonstrating how visual analytics tools can instead enable expert-driven qualitative analyses at scale by supporting computer-in-the-loop mixed-initiative approaches. We argue that visual analytics tools can support rich qualitative inference by using machine learning methods to continually model and refine what features correlate to an analyst’s on-going qualitative observations and by providing transparency into these features in order to aid analysts in navigating large corpora during qualitative analyses. We illustrate these ideas through an example from social media analysis and discuss open opportunities for designing visualizations that support qualitative inference through computer-in-the-loop approaches. 
    more » « less
  5. In this chapter, we address the problem of why blockages occur during mathematization by introducing a method for studying mathematizing based in quantitative reasoning. We report on interview data with six tertiary STEM majors as they developed models of the population dynamics of cats and birds in a backyard habitat. Our analysis focused on real-world relationships participants tried to express when using a given arithmetic operation in a predator-prey modelling task. Our results reveal the conceptions of × participants used to justify their models when constructing an expression for the decrease in the bird population. We conclude by discussing the method’s utility for studying mathematization and with conjectures on how instructors might leverage participants’ justifications to scaffold their emergent models towards a conventionally correct model. 
    more » « less