The interaction between a pair of tandem in-line oscillating hydrofoils is presented. The hydrofoils undergo sinusoidal pitching about their leading edges with a fixed Strouhal number of [Formula: see text] and a Reynolds number of 10,000. The streamwise spacing, spanwise spacing, and phase offset between the hydrofoils are varied. Force measurements are employed to investigate changes in thrust, lift, spanwise force, power consumption, and propulsive efficiency. A method to mitigate confounding factors from connecting rod drag is employed using streamlined fairings. Near and far streamwise spacing regions are identified with a transition occurring near 0.875 chord lengths downstream. Decreasing streamwise spacing in the far region causes a rise in the maximum power consumption of the follower hydrofoil. Decreasing streamwise spacing in the near region results in an opposite trend, with a sharp drop in maximum average power consumption by the follower. An empirical model for power consumption of the follower is developed. Increased spanwise spacing is found to weaken the interaction between the hydrofoils, driving them toward their isolated performance. This phenomenon is related to the spanwise contraction of the wake shed by the leader and is a function of the overlap of the wake region impacting the follower.
- Award ID(s):
- 1126371
- NSF-PAR ID:
- 10089711
- Date Published:
- Journal Name:
- ASME Turbo Expo 2015: Turbine Technical Conference and Exposition
- Page Range / eLocation ID:
- V05AT11A031
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The present investigation represents the rotational effect on gas turbine blade internal cooling with a uniform heat flux of 2000 W/m2 at the bottom wall. The experiment was conducted with three different rpms, such as 300 rpm, 600 rpm, and 900 rpm, with Reynolds number (Re) ranging from 6000 to 50,000 with a two-pass cooling channel. The numerical investigation was conducted with the large eddy simulation (LES) technique to understand the rotational flow behavior of the cooling channel. Four distinct arrangements of dimpled cooling channel surfaces were considered with two different dimple shapes, i.e., partial spherical and leaf. It is found that the rotation effect, dimple arrangement, and design have significant influences on heat transfer. Results indicated that the partial spherical 1-row dimpled surface experienced the highest heat transfer coefficient and pressure drop. In contrast, the leaf-shaped dimpled cooling channel experienced the highest thermal efficiency.more » « less
-
This study demonstrates that the aerodynamic drag profile of a patterned deformable cylinder at high Reynolds numbers can be programmed, on demand, by modifying its topography through pneumatic actuation. The samples used in the experiments comprise a rigid tube containing a hexagonal array of holes, over which an elastomeric cylindrical membrane is stretched. Decreasing the internal pressure of the structure causes an inward deflection of the outer membrane over the holes, thereby producing a regular pattern of dimples. The depth of these dimples can be controlled by tuning the pressure differential. The relationship between the mechanical deformation of the membrane and the pneumatic loading is characterized using a combination of finite element simulations and precision mechanical experiments. Wind tunnel experiments are performed to study how both the depth and the diameter of the dimples dictate the aerodynamic performance of the samples in the critical Reynolds number regime. Finally, the tunable nature of the specimens is exploited to automatically control the dependence of the drag coefficient on the Reynolds number, toward targeting predefined drag profiles.
-
High-resolution large eddy simulations and complementary laboratory experiments using particle image velocimetry were performed to provide a detailed quantitative assessment of flow response to gaps in cylinder arrays. The base canopy consists of a dense array of emergent rigid cylinders placed in a regular staggered pattern. The gaps varied in length from [Formula: see text] to 24, in intervals of 4 d, where d is the diameter of the cylinders. The analysis was performed under subcritical conditions with Froude numbers [Formula: see text] and bulk Reynolds numbers [Formula: see text]. Results show that the gaps affect the flow statistics at the upstream and downstream proximity of the canopy. The affected zone was [Formula: see text] for the mean flow and [Formula: see text] for the second-order statistics. Dimensionless time-averaged streamwise velocity within the gap exhibited minor variability with gap spacing; however, in-plane turbulent kinetic energy, k, showed a consistent decay rate when normalized with that at [Formula: see text] from the beginning of the gap. The emergent canopy acts as a passive turbulence generator for the gap flow for practical purposes. The streamwise dependence of k follows an exponential trend within [Formula: see text] and transitions to a power-law at [Formula: see text]. The substantially lower maximum values of k within the gap compared to k within the canopy evidence a limitation of gap measurements representative of canopy flow statistics. We present a base framework for estimating representative in-canopy statistics from measurements in the gap.more » « less
-
Direct numerical simulations (DNS) are performed to investigate the spatial evolution of flat-plate zero-pressure-gradient turbulent boundary layers over long streamwise domains ( ${>}300\delta _i$ , with $\delta _i$ the inflow boundary-layer thickness) at three different Mach numbers, $2.5$ , $4.9$ and $10.9$ , with the surface temperatures ranging from quasiadiabatic to highly cooled conditions. The settlement of turbulence statistics into a fully developed equilibrium state of the turbulent boundary layer has been carefully monitored, either based on the satisfaction of the von Kármán integral equation or by comparing runs with different inflow turbulence generation techniques. The generated DNS database is used to characterize the streamwise evolution of multiple important variables in the high-Mach-number, cold-wall regime, including the skin friction, the Reynolds analogy factor, the shape factor, the Reynolds stresses, and the fluctuating wall quantities. The data confirm the validity of many classic and newer compressibility transformations at moderately high Reynolds numbers (up to friction Reynolds number $Re_\tau \approx 1200$ ) and show that, with proper scaling, the sizes of the near-wall streaks and superstructures are insensitive to the Mach number and wall cooling conditions. The strong wall cooling in the hypersonic cold-wall case is found to cause a significant increase in the size of the near-wall turbulence eddies (relative to the boundary-layer thickness), which leads to a reduced-scale separation between the large and small turbulence scales, and in turn to a lack of an outer peak in the spanwise spectra of the streamwise velocity in the logarithmic region.more » « less