skip to main content


This content will become publicly available on November 1, 2024

Title: Effects of Spanwise Spacing on the Interaction of Tandem Pitching Hydrofoils

The interaction between a pair of tandem in-line oscillating hydrofoils is presented. The hydrofoils undergo sinusoidal pitching about their leading edges with a fixed Strouhal number of [Formula: see text] and a Reynolds number of 10,000. The streamwise spacing, spanwise spacing, and phase offset between the hydrofoils are varied. Force measurements are employed to investigate changes in thrust, lift, spanwise force, power consumption, and propulsive efficiency. A method to mitigate confounding factors from connecting rod drag is employed using streamlined fairings. Near and far streamwise spacing regions are identified with a transition occurring near 0.875 chord lengths downstream. Decreasing streamwise spacing in the far region causes a rise in the maximum power consumption of the follower hydrofoil. Decreasing streamwise spacing in the near region results in an opposite trend, with a sharp drop in maximum average power consumption by the follower. An empirical model for power consumption of the follower is developed. Increased spanwise spacing is found to weaken the interaction between the hydrofoils, driving them toward their isolated performance. This phenomenon is related to the spanwise contraction of the wake shed by the leader and is a function of the overlap of the wake region impacting the follower.

 
more » « less
Award ID(s):
1653181
NSF-PAR ID:
10481579
Author(s) / Creator(s):
; ;
Publisher / Repository:
AIAA
Date Published:
Journal Name:
AIAA Journal
Volume:
61
Issue:
11
ISSN:
0001-1452
Page Range / eLocation ID:
5121 to 5131
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Noise produced by aerodynamic interaction between a circular cylinder (rod) and an airfoil in a tandem arrangement is investigated numerically using incompressible large eddy simulations. Quasi-periodic shedding from the rod and the resulting wake impinges on the airfoil to produce unsteady loads on the two geometries. These unsteady loads act as sources of aerodynamic sound and the sound radiates to the far-field with a dipole directivity. The airfoil is set at zero angle of attack for the simulations and the Reynolds number based on the rod diameter is Red = 48 K. Comparisons with experimental measurements are made for (a) mean and root mean square surface pressure on the rod, (b) profiles of mean and root mean square streamwise velocity in the rod wake, (c) velocity spectra in the near field, and (d) far-field pressure spectra. Curle’s acoustic analogy is used with the airfoil surface pressure data from the simulations to predict the far-field sound. An improved correction based on observed spanwise coherence is used to account for the difference in span lengths between the experiments and the simulations. Good agreement with data is observed for the near-field aerodynamics and the far-field sound predictions. The straight leading edge airfoil is then replaced with a test airfoil with a serrated leading edge geometry while maintaining the mean chord. This new configuration is also analyzed numerically and found to give a substantial reduction in the far-field noise spectra in the mid- to high-frequency range. Source diagnostics show that the serrations reduce unsteady loading on the airfoil, reduce coherence along the span, and increase spanwise phase variation, all of which contribute to noise reduction. 
    more » « less
  2. null (Ed.)
    New experiments examine the interactions between a pair of three-dimensional (AR = 2) non-uniformly flexible pitching hydrofoils through force and efficiency measurements. It is discovered that the collective efficiency is improved when the follower foil has a nearly out-of-phase synchronization with the leader and is located directly downstream with an optimal streamwise spacing of X*=0.5. The collective efficiency is further improved when the follower operates with a nominal amplitude of motion that is 36% larger than the leader’s amplitude. A slight degradation in the collective efficiency was measured when the follower was slightly-staggered from the in-line arrangement where direct vortex impingement is expected. Operating at the optimal conditions, the measured collective efficiency and thrust are ηC=62% and CT,C=0.44, which are substantial improvements over the efficiency and thrust of ηC=29% and CT,C=0.16 of two fully-rigid foils in isolation. This demonstrates the promise of achieving high-efficiency with simple purely pitching mechanical systems and paves the way for the design of high-efficiency bio-inspired underwater vehicles. 
    more » « less
  3. Many species of fish gather in dense collectives or schools where there are significant flow interactions from their shed wakes. Commonly, these swimmers shed a classic reverse von Kármán wake, however, schooling eels produce a bifurcated wake topology with two vortex rings shed per oscillation cycle. To examine the schooling interactions of a hydrofoil with a bifurcated wake topology, we present tomographic particle image velocimetry (tomo PIV) measurements of the flow interactions and direct force measurements of the performance of two low-aspect-ratio hydrofoils ( A R = 0.5 ) in an in-line and a staggered arrangement. Surprisingly, when the leader and follower are interacting in either arrangement there are only minor alterations to the flowfields beyond the superposition of the flowfields produced by the isolated leader and follower. Motivated by this finding, Garrick’s linear theory, a linear unsteady hydrofoil theory based on a potential flow assumption, was adapted to predict the lift and thrust performance of the follower. Here, the follower hydrofoil interacting with the leader’s wake is considered as the superposition of an isolated pitching foil with a time-varying cross-stream velocity derived from the wake flow measurements of the isolated leader. Linear theory predictions accurately capture the time-averaged lift force and some of the major peaks in thrust derived from the follower interacting with the leader’s wake in a staggered arrangement. The thrust peaks that are not predicted by linear theory are likely driven by spatial variations in the flowfield acting on the follower or nonlinear flow interactions; neither of which are accounted for in the simple theory. This suggests that unsteady potential flow theory that does account for spatial variations in the flowfield acting on a hydrofoil can provide a relatively simple framework to understand and model the flow interactions that occur in schooling fish. Additionally, schooling eels can derive thrust and efficiency increases of 63-80% in either a in-line or a staggered arrangement where the follower is between two branched momentum jets or with one momentum jet branch directly impinging on it, respectively. 
    more » « less
  4. As a result of the reduced pressure loss relative to ribs, recessed dimples have the potential to increase the thermal performance of internal cooling passages. In this experimental investigation, a Stereo-Particle Image Velocimetry (S-PIV) technique is used to characterize the three-dimensional, internal flow field over V-shaped dimple arrays. These flowfield measurements are combined with surface heat transfer measurements to fully characterize the performance of the proposed V-shaped dimples. This study compares the performance of two arrays. Both a staggered array and an in-line array of V-shaped dimples are considered. The layout of these V-shaped dimples is derived from a traditional, staggered hemispherical dimple array. The individual V-shaped dimples follow the same geometry, with depths of δ / D = 0.30. In the case of the in-line pattern, the spacing between the V-shaped dimples is 3.2D in both the streamwise and spanwise directions. For the staggered pattern, a spacing of 3.2D in the spanwise direction and 1.6D in the streamwise direction is examined. Each of these patterns was tested on one wide wall of a 3:1 rectangular channel. The Reynolds numbers examined range from 10000 to 37000. S-PIV results show that as the Reynolds numbers increase, the strength of the secondary flows induced by the in-line array increases, enhancing the heat transfer from the surface, without dramatically increasing the measured pressure drop. As a result of a minimal increase in pressure drop, the overall thermal performance of the channel increases as the Reynolds number increases (up to the maximum Reynolds number of 37000). 
    more » « less
  5. Numerical simulations are employed to study hydrodynamic interactions between two-dimensional fish-like bodies under a traveling wavy lateral motion in high-density diamond-shaped fish schools. This study focuses on two different streamwise spacings, a dense school with 0.4 body length (BL) spacing and a sparse school with 2.0 BL spacing, respectively. An immersed-boundary-method-based incompressible Navier–Strokes flow solver is then employed to quantitatively simulate the resulting flow patterns and associated propulsive performance of the schools. The results suggest that a fish in the dense school achieves higher thrust production and higher propulsive efficiency than that in the sparse school due to a strong wall effect from neighboring fishes. In addition, results from changing the lateral spacing in the dense school have shown that the wall effect is enhanced as the lateral spacing decreases. Flow analyses have shown that the wake pattern of the fish swimming diagonally behind the leading fish in a dense diamond-shaped school transfers from 2S to 2P when the lateral spacing is smaller than 0.6 BL. As a result, an angled jet is produced behind the school and brings more momentum downstream. At the same time, the appearance of the trailing fish results in a stronger pressure region behind the leading fish and leads to a higher hydrodynamic performance of the leading fish in the dense school. The insights revealed from this study will contribute to understanding physical mechanisms in fish schools and providing a new swimming strategy for bio-inspired underwater swarm robots. 
    more » « less