Ocean circulation responses to interhemispheric radiative imbalance can damp north–south migrations of the intertropical convergence zone (ITCZ) by reducing the burden on atmospheric energy transport. The role of the Atlantic meridional overturning circulation (AMOC) in such dynamics has not received much attention. Here, we present coupled climate modeling results that suggest AMOC responses are of first-order importance to muting ITCZ shift magnitudes as a pair of hemispherically asymmetric solar forcing bands is moved from equatorial to polar latitudes. The cross-equatorial energy transport response to the same amount of interhemispheric forcing becomes systematically more ocean-centric when higher latitudes are perturbed in association with strengthening AMOC responses. In contrast, the responses of the Pacific subtropical cell are not monotonic and cannot predict this variance in the ITCZ’s equilibrium position. Overall, these results highlight the importance of the meridional distribution of interhemispheric radiative imbalance and the rich buffering of internal feedbacks that occurs in dynamic versus thermodynamic (slab) ocean modeling experiments. Mostly, the results imply that the problem of developing a theory of ITCZ migration is entangled with that of understanding the AMOC’s response to hemispherically asymmetric radiative forcing—a difficult topic deserving of focused analysis across more climate models.
more » « less- NSF-PAR ID:
- 10089739
- Publisher / Repository:
- American Meteorological Society
- Date Published:
- Journal Name:
- Journal of Climate
- Volume:
- 32
- Issue:
- 8
- ISSN:
- 0894-8755
- Page Range / eLocation ID:
- p. 2207-2226
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Cross-equatorial ocean heat transport (OHT) changes have been found to damp meridional shifts of the intertropical convergence zone (ITCZ) induced by hemispheric asymmetries in radiative forcing. Zonal-mean energy transport theories and idealized model simulations have suggested that these OHT changes occur primarily due to wind-driven changes in the Indo-Pacific’s shallow subtropical cells (STCs) and buoyancy-driven changes in the deep Atlantic meridional overturning circulation (AMOC). In this study we explore the partitioning between buoyancy and momentum forcing in the ocean’s response. We adjust the top-of-atmosphere solar forcing to cool the Northern Hemisphere (NH) extratropics in a novel set of comprehensive climate model simulations designed to isolate buoyancy-forced and momentum-forced changes. In this case of NH high-latitude forcing, we confirm that buoyancy-driven changes in the AMOC dominate in the Atlantic. However, in contrast with prior expectations, buoyancy-driven changes in the STCs are the primary driver of the heat transport changes in the Indo-Pacific. We find that buoyancy-forced Indo-Pacific STC changes transport nearly 4 times the amount of heat across the equator as the shallower wind-driven STC changes. This buoyancy-forced STC response arises from extratropical density perturbations that are amplified by the low cloud feedback and communicated to the tropics by the ventilated thermocline. While the ocean’s specific response is dependent on the forcing scheme, our results suggest that partitioning the ocean’s total response to energy perturbations into buoyancy and momentum forcing provides basin-specific insight into key aspects of how the ocean damps ITCZ migrations that previous zonal-mean frameworks omit.more » « less
-
Abstract Tropical climate response to greenhouse warming is to first order symmetric about the equator but climate models disagree on the degree of latitudinal asymmetry of the tropical change. Intermodel spread in equatorial asymmetry of tropical climate response is investigated by using 37 models from phase 6 of the Coupled Model Intercomparison Project (CMIP6). In the simple simulation with CO2increase at 1% per year but without aerosol forcing, this study finds that intermodel spread in tropical asymmetry is tied to that in the extratropical surface heat flux change related to the Atlantic meridional overturning circulation (AMOC) and Southern Ocean sea ice concentration (SIC). AMOC or Southern Ocean SIC change alters net energy flux at the top of the atmosphere and sea surface in one hemisphere and may induce interhemispheric atmospheric energy transport. The negative feedback of the shallow meridional overturning circulation in the tropics and the positive low cloud feedback in the subtropics are also identified. Our results suggest that reducing the intermodel spread in extratropical change can improve the reliability of tropical climate projections.
-
null (Ed.)Abstract As the greenhouse gas concentrations increase, a warmer climate is expected. However, numerous internal climate processes can modulate the primary radiative warming response of the climate system to rising greenhouse gas forcing. Here the particular internal climate process that we focus on is the Atlantic meridional overturning circulation (AMOC), an important global-scale feature of ocean circulation that serves to transport heat and other scalars, and we address the question of how the mean strength of AMOC can modulate the transient climate response. While the Community Earth System Model version 2 (CESM2) and the Energy Exascale Earth System Model version 1 (E3SM1) have very similar equilibrium/effective climate sensitivity, our analysis suggests that a weaker AMOC contributes in part to the higher transient climate response to a rising greenhouse gas forcing seen in E3SM1 by permitting a faster warming of the upper ocean and a concomitant slower warming of the subsurface ocean. Likewise the stronger AMOC in CESM2 by permitting a slower warming of the upper ocean leads in part to a smaller transient climate response. Thus, while the mean strength of AMOC does not affect the equilibrium/effective climate sensitivity, it is likely to play an important role in determining the transient climate response on the centennial time scale.more » « less
-
Abstract An idealized aquaplanet moist global atmospheric model with realistic radiative transfer but no clouds and no convective parameterization is found to possess multiple climate equilibria. When forced symmetrically about the equator, in some cases the Inter Tropical Convergence Zone (ITCZ) migrates to an off‐equatorial equilibrium position. Mechanism denial experiments prescribing relative humidity imply that radiation‐circulation coupling is essential to this instability. The cross‐equatorial asymmetry occurs only when the underlying slab ocean is sufficiently deep and the atmosphere's spectral dynamical core is sufficiently coarse (∼T170 or less with our control parameters). At higher resolutions, initializing with an asymmetric state indicates metastability with very slow (thousands of days) return to hemispheric symmetry. There is some sensitivity to the model timestep, which affects the time required to transition to the asymmetric state, with little effect on the equilibrium climate. The instability is enhanced when the planetary boundary layer scheme favors deeper layers or by a prescribed meridional heat transport away from the equator within the slab. The instability is not present when the model is run with a convective parameterization scheme commonly utilized in idealized moist models. We argue that the instability occurs when the asymmetric heating associated with a spontaneous ITCZ shift drives a circulation that rises poleward of the perturbed ITCZ. These results serve as a warning of the potential for instability and non‐uniqueness of climate that may complicate studies with idealized models of the tropical response to perturbations in forcing.
-
Abstract The Intertropical Convergence Zone (ITCZ) has an annual mean location north of the equator today. The factors determining this location and the evolution to its modern state are actively debated. Here we investigate how the Atlantic Meridional Overturning Circulation (AMOC) influences the ITCZ during the early‐to‐middle Miocene. By conducting a sensitivity study with an open Canadian Arctic Archipelago gateway, we show that North Atlantic Deep‐Water formation strengthens the AMOC, in alignment with Miocene North Atlantic ventilation proxies. A vigorous AMOC increases northward Atlantic Ocean heat transport and cross‐equatorial atmospheric energy transport shifts southwards to compensate, pushing the ITCZ northwards. Our study supports AMOC development as a strong contributor to the ITCZ's northern location today. Existing proxy‐based interpretations of ITCZ history are too sparse to strongly confirm these results. We predict a strong in‐phase relationship between AMOC strength and ITCZ's northward location, which should be testable in high resolution paleoclimate records.