skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Sub-Classification of Blip Glitches Using Q-Transforms and Convolutional Neural Networks with GravitySpy
Transient noise, called "glitches," can mimic and obscure real gravitational waves in the strain data channel. One machine learning software package used to classify these glitches and identify their sources, GravitySpy, is successful when the spectrogram of the glitch has a very distinct and unique shape. However, one of the most common types of glitches, called a "blip," has an indistinct shape due to so few cycles being in-band, and tends to ring off template signals of binary black hole mergers, making it especially necessary to eliminate blips for future observing runs. Here we examine blip glitches in a Q-transform spectrogram with different parameters than those used by GravitySpy to determine if there are sub-classifications of blips that might have identifiable sources, and then use Convolutional Neural Networks to sub-classify these blips. The implementation of Convolutional Neural Networks has provided compelling evidence of distinguishable differences between these hypothesized sub-classes.  more » « less
Award ID(s):
1757303
PAR ID:
10089820
Author(s) / Creator(s):
;
Date Published:
Journal Name:
LIGO Laboratory Summer 2018 Undergraduate Research
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The automatic classification of electrocardiogram (ECG) signals has played an important role in cardiovascular diseases diagnosis and prediction. Deep neural networks (DNNs), particularly Convolutional Neural Networks (CNNs), have excelled in a variety of intelligent tasks including biomedical and health informatics. Most the existing approaches either partition the ECG time series into a set of segments and apply 1D-CNNs or divide the ECG signal into a set of spectrogram images and apply 2D-CNNs. These studies, however, suffer from the limitation that temporal dependencies between 1D segments or 2D spectrograms are not considered during network construction. Furthermore, meta-data including gender and age has not been well studied in these researches. To address those limitations, we propose a multi-module Recurrent Convolutional Neural Networks (RCNNs) consisting of both CNNs to learn spatial representation and Recurrent Neural Networks (RNNs) to model the temporal relationship. Our multi-module RCNNs architecture is designed as an end-to-end deep framework with four modules: (i) timeseries module by 1D RCNNs which extracts spatio-temporal information of ECG time series; (ii) spectrogram module by 2D RCNNs which learns visual-temporal representation of ECG spectrogram ; (iii) metadata module which vectorizes age and gender information; (iv) fusion module which semantically fuses the information from three above modules by a transformer encoder. Ten-fold cross validation was used to evaluate the approach on the MIT-BIH arrhythmia database (MIT-BIH) under different network configurations. The experimental results have proved that our proposed multi-module RCNNs with transformer encoder achieves the state-of-the-art with 99.14% F1 score and 98.29% accuracy. 
    more » « less
  2. This dataset contains the data used in the paper (arXiv:2301.02398) on the estimation and subtraction of glitches in gravitational wave data using an adaptive spline fitting method called SHAPES . Each .zip file corresponds to one of the glitches considered in the paper. The name of the class to which the glitch belongs (e.g., "Blip") is included in the name of the corresponding .zip file (e.g., BLIP_SHAPESRun_20221229T125928.zip). When uncompressed, each .zip file expands to a folder containing the following. An HDF5 file containing the Whitened gravitational wave (GW) strain data in which the glitch appeared. The data has been whitened using a proprietary code. The original (unwhitened) strain data file is available from gwosc.org. The name of the original data file is the part preceding the token '__dtrndWhtnBndpss' in the name of the file.A JSON file containing information pertinent to the glitch that was analyzed (e.g., start and stop indices in the whitened data time series).A set of .mat  files containing segmented estimates of the glitch as described in the paper.  A MATLAB script, plotglitch.m, has been provided that plots, for a given glitch folder name, the data segment that was analyzed in the paper. Another script, plotshapesestimate.m, plots the estimated glitch. These scripts require the JSONLab package. 
    more » « less
  3. ABSTRACT The global network of interferometric gravitational wave (GW) observatories (LIGO, Virgo, KAGRA) has detected and characterized nearly 100 mergers of binary compact objects. However, many more real GWs are lurking sub-threshold, which need to be sifted from terrestrial-origin noise triggers (known as glitches). Because glitches are not due to astrophysical phenomena, inference on the glitch under the assumption it has an astrophysical source (e.g. binary black hole coalescence) results in source parameters that are inconsistent with what is known about the astrophysical population. In this work, we show how one can extract unbiased population constraints from a catalogue of both real GW events and glitch contaminants by performing Bayesian inference on their source populations simultaneously. In this paper, we assume glitches come from a specific class with a well-characterized effective population (blip glitches). We also calculate posteriors on the probability of each event in the catalogue belonging to the astrophysical or glitch class, and obtain posteriors on the number of astrophysical events in the catalogue, finding it to be consistent with the actual number of events included. 
    more » « less
  4. Volcano seismicity is often detected and classified based on its spectral properties. However, the wide variety of volcano seismic signals and increasing amounts of data make accurate, consistent, and efficient detection and classification challenging. Machine learning (ML) has proven very effective at detecting and classifying tectonic seismicity, particularly using Convolutional Neural Networks (CNNs) and leveraging labeled datasets from regional seismic networks. Progress has been made applying ML to volcano seismicity, but efforts have typically been focused on a single volcano and are often hampered by the limited availability of training data. We build on the method of Tan et al. [2024] (10.1029/2024JB029194) to generalize a spectrogram-based CNN termed the VOlcano Infrasound and Seismic Spectrogram Neural Network (VOISS-Net) to detect and classify volcano seismicity at any volcano. We use a diverse training dataset of over 270,000 spectrograms from multiple volcanoes: Pavlof, Semisopochnoi, Tanaga, Takawangha, and Redoubt volcanoes\replaced (Alaska, USA); Mt. Etna (Italy); and Kīlauea, Hawai`i (USA). These volcanoes present a wide range of volcano seismic signals, source-receiver distances, and eruption styles. Our generalized VOISS-Net model achieves an accuracy of 87 % on the test set. We apply this model to continuous data from several volcanoes and eruptions included within and outside our training set, and find that multiple types of tremor, explosions, earthquakes, long-period events, and noise are successfully detected and classified. The model occasionally confuses transient signals such as earthquakes and explosions and misclassifies seismicity not included in the training dataset (e.g. teleseismic earthquakes). We envision the generalized VOISS-Net model to be applicable in both research and operational volcano monitoring settings. 
    more » « less
  5. This data set contains the individual classifications that the Gravity Spy citizen science volunteers made for glitches through 20 July 2024. Classifications made by science team members or in testing workflows have been removed as have classifications of glitches lacking a Gravity Spy identifier. See Zevin et al. (2017) for an explanation of the citizen science task and classification interface. Data about glitches with machine-learning labels are provided in an earlier data release (Glanzer et al., 2021). Final classifications combining ML and volunteer classifications are provided in Zevin et al. (2022).  22 of the classification labels match the labels used in the earlier data release, namely 1080Lines, 1400Ripples, Air_Compressor, Blip, Chirp, Extremely_Loud, Helix, Koi_Fish, Light_Modulation, Low_Frequency_Burst, Low_Frequency_Lines, No_Glitch, None_of_the_Above, Paired_Doves, Power_Line, Repeating_Blips, Scattered_Light, Scratchy, Tomte, Violin_Mode, Wandering_Line and Whistle. One glitch class that was added to the machine-learning classification has not been added to the Zooniverse project and so does not appear in this file, namely Blip_Low_Frequency. Four classes were added to the citizen science platform but not to the machine learning model and so have only volunteer labels, namely 70HZLINE, HIGHFREQUENCYBURST, LOWFREQUENCYBLIP and PIZZICATO. The glitch class Fast_Scattering added to the machine-learning classification has an equivalent volunteer label CROWN, which is used here (Soni et al. 2021). Glitches are presented to volunteers in a succession of workflows. Workflows include glitches classified by a machine learning classifier as being likely to be in a subset of classes and offer the option to classify only those classes plus None_of_the_Above. Each level includes the classes available in lower levels. The top level does not add new classification options but includes all glitches, including those for which the machine learning model is uncertain of the class. As the classes available to the volunteers change depending on the workflow, a glitch might be classified as None_of_the_Above in a lower workflow and subsequently as a different class in a higher workflow. Workflows and available classes are shown in the table below.  Workflow ID Name Number of glitch classes Glitches added 1610  Level 1 3 Blip, Whistle, None_of_the_Above 1934 Level 2 6 Koi_Fish, Power_Line, Violin_Mode 1935 Level 3 10 Chirp, Low_Frequency_Burst, No_Glitch, Scattered_Light 2360 Original level 4 22 1080Lines, 1400Ripples, Air_Compressor, Extremely_Loud, Helix, Light_Modulation, Low_Frequency_Lines, Paired_Doves, Repeating_Blips, Scratchy, Tomte, Wandering_Line 7765 New level 4 15 1080Lines, Extremely_Loud, Low_Frequency_Lines, Repeating_Blips, Scratchy 2117 Original level 5 22 No new glitch classes 7766 New level 5 27 1400Ripples, Air_Compressor, Paired_Doves, Tomte, Wandering_Line, 70HZLINE, CROWN, HIGHFREQUENCYBURST, LOWFREQUENCYBLIP, PIZZICATO 7767 Level 6 27 No new glitch classes Description of data fields Classification_id: a unique identifier for the classification. A volunteer may choose multiple classes for a glitch when classifying, in which case there will be multiple rows with the same classification_id. Subject_id: a unique identifier for the glitch being classified. This field can be used to join the classification to data about the glitch from the prior data release.  User_hash: an anonymized identifier for the user making the classification or for anonymous users an identifier that can be used to track the user within a session but which may not persist across sessions.  Anonymous_user: True if the classification was made by a non-logged in user.  Workflow: The Gravity Spy workflow in which the classification was made.  Workflow_version: The version of the workflow. Timestamp: Timestamp for the classification.  Classification: Glitch class selected by the volunteer.  Related datasets For machine learning classifications on all glitches in O1, O2, O3a, and O3b, please see Gravity Spy Machine Learning Classifications on Zenodo For classifications of glitches combining machine learning and volunteer classifications, please see Gravity Spy Volunteer Classifications of LIGO Glitches from Observing Runs O1, O2, O3a, and O3b. For the training set used in Gravity Spy machine learning algorithms, please see Gravity Spy Training Set on Zenodo. For detailed information on the training set used for the original Gravity Spy machine learning paper, please see Machine learning for Gravity Spy: Glitch classification and dataset on Zenodo. 
    more » « less