skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Suction and thermal conductivity of unsaturated loess from Northern France
Loess covers large areas around the earth. Loess deposits are typically composed of silt with clay and fine sand particles and it is usually distributed with a few meters thick. Literature review shows that, the thermal conductivity of loess varies in a relatively large range from 0.2 to 2 W/(mK), depending on the particle composition, texture and moisture content of soil. In this study, loess samples were taken at shallow depth from the Northern France. Suction, volumetric moisture content and thermal conductivity of soil were measured simultaneously while wetting/drying cycles were applied to the sample. The results show that, the degree of saturation significantly affects the thermal conductivity of the soil. The relationship between these two parameters is reversible under wetting/drying cycles while hysteresis can be observed while plotting the thermal conductivity versus suction.  more » « less
Award ID(s):
1634493
PAR ID:
10090170
Author(s) / Creator(s):
Date Published:
Journal Name:
UNSAT 2018
Volume:
1
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. T. Matthew Evans, Ph.D. Nina Stark (Ed.)
    The expansive behavior of clayey soil in response to climate-induced changes in the soil water characteristic curve (SWCC) is a significant issue for many types of earth infrastructure. The application of geosynthetic material has been common to reduce the climate-induced changes in SWCC. Engineered turf, which is a composite geosynthetic material, has gained popularity for different earth systems to increase overall infrastructure resiliency. This paper’s objective was to investigate engineered turf’s effect on the climate-induced changes in SWCC at shallow depths in the field conditions using the statistical non-parametric measure: Spearman rank correlation coefficient (ρs). This research hypothesized that since the changes in soil moisture and suction would relatively be simultaneous for exposed ground under variable climate, thereby exhibiting a reasonable negative correlation between water content and suction, whereas the degree of simultaneity in the changes between water content and suction of the soil under the engineered turf would display arbitrary correlation. To test the hypothesis, two test beds, (1) a compacted clay bed (CCB) and (2) a compacted clay bed overlain by engineered turf (ETB), were constructed with expansive soil and instrumented with collocated moisture sensors and tensiometers identically to collect concurrent water content and suction data continuously. The analysis revealed that the estimated ρs values for CCB were almost −1.0 during different drying conditions indicating a very strong correlation. On the contrary, the estimated ρs values for ETB were +0.79 to −0.32 indicating an irrational to a weak correlation between ρs. The results indicated the engineered turf to be an effective barrier to climate-induced changes in SWCC. 
    more » « less
  2. T. Matthew Evans, Ph.D. Nina Stark (Ed.)
    Soil water characteristic curve (SWCC) which describes the relationship between water content and matric suction is important to analyzing unsaturated soil behavior. Because of the degree of uncertainty in field conditions due to climatic variability and soil heterogeneities, it becomes necessary to probabilistically characterize the SWCC. A satisfactory probabilistic characterization of field-based SWCCs requires a substantial data pair of water content and suction and their distribution characteristics. In this study, the kernel density estimate (KDE) approach was applied to water content and suction data measured from field-installed co-located sensors of a compacted clay bed to (1) determine the modality of water content and suction distribution and their constitutive relationship at variable weather conditions and (2) demonstrate the importance of probabilistic analysis of SWCC. The Gaussian function was used in the KDE analysis. A moisture sensor and soil water potential sensor were juxtaposed at 0.3 m depth of the 3 m × 3 m compacted clay bed to collect the water content and suction data and determine their distribution under the field condition. The density plots of both water content and suction at 0.3 m depth exhibited multimodal distribution due to the uneven distribution of climatic events. The KDE reasonably identified the air entry value, saturated moisture content, and residual moisture content in the field conditions, which were validated with field-based SWCC plots. The study showed that probabilistic analysis better interprets the realistic scenarios of field unsaturated soil behavior. 
    more » « less
  3. Due to cyclic wetting and drying, the hydro-mechanical behavior of unsaturated soil is impacted significantly. In order to assess the soil strength parameters, knowing the unsaturated behavior is important. Soil moisture content is an important parameter that can define the shear strength of the soil. Most of the highway slopes of Mississippi are built on highly expansive clay. During summer, the evaporation of moisture in the soil leads to shrinkage and the formation of desiccation cracks, while during rainfall, the soil swells due to the infiltration of water. In addition to this, the rainwater gets trapped in these cracks and creates perched conditions, leading to the increased moisture content and reduced shear strength of slope soil. The increased precipitation due to climate change is causing failure conditions on many highway slopes of Mississippi. Vetiver, a perennial grass, can be a transformative solution to reduce the highway slope failure challenges of highly plastic clay. The grass has deep and fibrous roots, which provide additional shear strength to the soil. The root can uptake a significant amount of water from the soil, keeping the moisture balance of the slope. The objective of the current study is to assess the changes in moisture contents of a highway slope in Mississippi after the Vetiver plantation. Monitoring equipment, such as rain gauges and moisture sensors, were installed to monitor the rainfall of the area and the moisture content of the soil. The data showed that the moisture content conditions were improved with the aging of the grass. The light detection and ranging (LiDAR) analysis was performed to validate the field data obtained from different sensors, and it was found that there was no significant slope movement after the Vetiver plantation. The study proves the performance of the Vetiver grass in improving the unsaturated soil behavior and stability of highway slopes built on highly expansive clay. 
    more » « less
  4. The hydro-mechanical behavior of unsaturated soil, particularly expansive soil, is influenced significantly by cyclic wetting and drying. Understanding the soil parameters is crucial when evaluating the performance of infrastructures constructed on expansive clay. As a result of extreme rainfall events, highway slopes containing highly expansive Yazoo clay in Mississippi, U.S., become vulnerable to volume change. The phenomenon creates perched water zones within the slopes and poses a risk of slope failure. The soil-water characteristic curve (SWCC) defines the relationship between water content and soil suction, which can be obtained from different laboratory procedures. However, conventional laboratory methods have some limitations. To address this, various analytical and predictive models have been developed, but they can only offer estimates based on soil characteristics and lack seasonal variations occurring in field conditions. Studying seasonal SWCC through field measurements can help understand soil responses to changing moisture conditions. The current study utilized field data from six highway slopes in Mississippi and classified the data into different seasons: spring, summer, and fall. After obtaining van Genuchten parameters from the fitted curve for each season, the finite element method was applied to evaluate the parameters for accurate numerical analysis of infrastructures containing expansive clay. The study observed the variations in flow parameters with seasonal change that cannot be achieved when data from only one season is considered. The findings underscore the importance of field instrumentation data for developing SWCC and the significance of seasonal flow parameters in infrastructure design. 
    more » « less
  5. Abstract Soil hydrology provides important background for understanding the fate of organic carbon (OC) buried by geomorphic processes as well as the influence of runoff, infiltration, and plant root uptake on long‐term erosion and landscape evolution. We modeled the hydrology of a 4.5‐m loess‐paleosol sequence on an eroding tableland in the U.S. central Great Plains using Hydrus 1D, a numerical unsaturated flow model, parameterized with high resolution measurements of the soil water retention and hydraulic conductivity curves, which were distinct for the loess and paleosols. We hypothesized that (a) the connection of paleosols to modern climate depends on their burial depth, (b) paleosols in the root zone would have broader pore‐size distributions than unweathered loess, and (c) this broader pore‐size distribution increased root water uptake and made vegetation more resilient to drought, increasing the stability of loess tablelands despite high erodibility and high local relief. Four years with varying total annual precipitation were simulated for the observed profile and two hypothetical profiles, one without paleosols and another with a shallow, strongly developed paleosol. In these simulations, soil moisture in shallow paleosols responds quickly to precipitation while a deeply buried paleosol is largely disconnected from the modern climate, contributing to buried OC preservation. Contrary to our expectation, the presence of paleosols did not increase root uptake relative to unweathered loess in either wet or dry years. The unweathered coarse loess we studied may have an optimal pore‐size distribution for root uptake, providing an alternative hypothesis for why highly erodible loess tablelands persist. 
    more » « less