Abstract Anthropogenic climate change has significant impacts at the ecosystem scale including widespread drought, flooding, and other natural disasters related to precipitation extremes. To contextualize modern climate change, scientists often look to ancient climate changes, such as shifts in ancient precipitation ranges. Previous studies have used fossil leaf organic geochemistry and paleosol inorganic chemistry as paleoprecipitation proxies, but have largely ignored the organic soil layer, which acts as a bridge between aboveground biomass and belowground inorganic carbon accumulation, as a potential recorder of precipitation. We investigate the relationship between stable carbon isotope values in soil organic matter (δ13CSOM) and a variety of seasonal and annual climate parameters in modern ecosystems and find a statistically significant relationship between δ13CSOMvalues and mean annual precipitation (MAP). After testing the relationship between actual and reconstructed precipitation values in modern systems, we test this potential paleoprecipitation proxy in the geologic record by comparing precipitation values reconstructed using δ13CSOMto other reconstructed paleoprecipitation estimates from the same paleosols. This study provides a promising new proxy that can be applied to ecosystems post‐Devonian (∼420 Ma) to the Miocene (∼23 Ma), and in mixed C3/C4ecosystems in the geologic record with additional paleobotanical and palynological information. It also extends paleoprecipitation reconstruction to more weakly developed paleosol types, such as those lacking B‐ horizons, than previous inorganic proxies and is calibrated for wetter environments.
more »
« less
Hydrology of a Semiarid Loess‐Paleosol Sequence, and Implications for Buried Soil Connection to the Modern Climate, Plant‐Available Moisture, and Loess Tableland Persistence
Abstract Soil hydrology provides important background for understanding the fate of organic carbon (OC) buried by geomorphic processes as well as the influence of runoff, infiltration, and plant root uptake on long‐term erosion and landscape evolution. We modeled the hydrology of a 4.5‐m loess‐paleosol sequence on an eroding tableland in the U.S. central Great Plains using Hydrus 1D, a numerical unsaturated flow model, parameterized with high resolution measurements of the soil water retention and hydraulic conductivity curves, which were distinct for the loess and paleosols. We hypothesized that (a) the connection of paleosols to modern climate depends on their burial depth, (b) paleosols in the root zone would have broader pore‐size distributions than unweathered loess, and (c) this broader pore‐size distribution increased root water uptake and made vegetation more resilient to drought, increasing the stability of loess tablelands despite high erodibility and high local relief. Four years with varying total annual precipitation were simulated for the observed profile and two hypothetical profiles, one without paleosols and another with a shallow, strongly developed paleosol. In these simulations, soil moisture in shallow paleosols responds quickly to precipitation while a deeply buried paleosol is largely disconnected from the modern climate, contributing to buried OC preservation. Contrary to our expectation, the presence of paleosols did not increase root uptake relative to unweathered loess in either wet or dry years. The unweathered coarse loess we studied may have an optimal pore‐size distribution for root uptake, providing an alternative hypothesis for why highly erodible loess tablelands persist.
more »
« less
- Award ID(s):
- 1920625
- PAR ID:
- 10386059
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Earth Surface
- Volume:
- 127
- Issue:
- 12
- ISSN:
- 2169-9003
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The distribution of brGDGT lipids produced by soil bacteria has been used to reconstruct temperatures in marine and terrestrial settings as far back as the Cretaceous period. However, modern calibrations of this proxy have primarily relied on air rather than in situ soil temperatures, which can differ by more than 10 ◦C. Furthermore, the influence of other parameters such as temperature seasonality and soil chemistry on brGDGT lipids is not fully understood. We measured brGDGT distributions, in situ soil temperatures, pH, soil water content, and electrical conductivity on soils from the Eastern Canadian Arctic and Iceland. We compiled our results with those of published soil brGDGT studies that also provide in situ soil temperatures and ancilliary measurements and generated global temperature and pH calibrations from the resulting dataset. Soil temperatures outperformed air temperatures in these calibrations, with mean summer soil temperature providing the highest-performing fit among the 10 tested soil temperature parameters. When applied to a loess/paleosol sequence from the Chinese Loess Plateau, these new calibrations produced paleotemperature and paleo-pH histories consistent with the results of previous studies, encouraging the application of our new calibrations on a broader scale. We also detected 7-methyl and IIIa’’ brGDGT isomers in our Eastern Canadian Arctic and Iceland soils, which have been shown in lakes to relate to salinity and anoxia, respectively. While neither correlated with bulk soil properties such as conductivity, soil water content, or pH, these brGDGT isomers did correlate with seasonality and winter soil temperature. We hypothesize that these compounds are generated in winter by bacteria in habitable niches of more saline, sometimes anoxic liquid water in the otherwise frozen soil matrix. Finally, we report the presence of overly branched GDGTs with m/z = 1064 and suggest that these heptamethylated tetraethers should be investigated as a potential tool for improving brGDGT calibrations. Overall, our results expand our understanding of the seasonality of brGDGT production, especially at high latitudes, and provide in situ soil temperature and pH calibrations for global use.more » « less
-
Loess covers large areas around the earth. Loess deposits are typically composed of silt with clay and fine sand particles and it is usually distributed with a few meters thick. Literature review shows that, the thermal conductivity of loess varies in a relatively large range from 0.2 to 2 W/(mK), depending on the particle composition, texture and moisture content of soil. In this study, loess samples were taken at shallow depth from the Northern France. Suction, volumetric moisture content and thermal conductivity of soil were measured simultaneously while wetting/drying cycles were applied to the sample. The results show that, the degree of saturation significantly affects the thermal conductivity of the soil. The relationship between these two parameters is reversible under wetting/drying cycles while hysteresis can be observed while plotting the thermal conductivity versus suction.more » « less
-
Paleocene-Eocene hyperthermals are viewed as some of the best ancient analogs for projected future anthropogenic climate change. In order to fully evaluate the magnitude of these climactic perturbations, however, a more complete understanding of prevailing background conditions is necessary. The Mississippi Embayment, a major southwest-dipping sedimentary basin in the Gulf of Mexico coastal region of North America, contains an extensive record of Paleocene strata deposited prior to the onset of the Paleocene Carbon Isotope Maximum (PCIM), a gradual warming trend upon which the Paleocene-Eocene Thermal Maximum (PETM) was superimposed. In order to evaluate pre-PCIM paleoclimate, we focus on paleosols in the Upper Paleocene Naheola Formation. A continuous section of the Naheola is available in archival core collected by Mississippi Minerals Resources Institute from Tippah County, Mississippi, USA. We performed a suite of initial core description methods, including logging of visual observations (e.g., grain size and Munsell colors), gamma density, magnetic susceptibility, smear slide analysis, and scanning electron microscopy with energy dispersive x-ray spectroscopy (SEM-EDS). Results indicate a > 8-m-thick interval of 5 stacked paleosols associated with 4 lignite seams. The paleosols range in thickness from 0.6 m to 1.9 m, while the lignite seams range in thickness from 0.3 m to 1.3 m. Paleosols are characterized by low chroma matrix colors, mottling, and abundant carbonized roots. The thickest paleosols each exhibit an interval that coarsens and then fines upward; these are likely composite paleosols. Applying SEM-EDS results from all paleosols to the chemical index of alteration minus potash (CIA-K) yields preliminary mean annual precipitation estimates between 1200 and 1300 mm. The oldest paleosol contains abundant kaolinite and future stable isotope analysis will be used to reconstruct paleotemperature. Ongoing work will evaluate the relative influence of each of the five soil-forming factors on Naheola paleosol development and reexamine Paleocene- Eocene hyperthermals within the context of our results. Future work will include pollen analysis to improve chronostratigraphic control and evaluate paleoecological response to the Paleocene- Eocene climate change.more » « less
-
Abstract A two decade‐long megadrought, with likely anthropogenic causes, has impacted forest growth and mortality across the southwestern U.S. Given this event, and the future likelihood of similar climate challenges, it is important to understand how different water resources are used by semi‐arid forests in this region. Within the geographic domain of the North American Monsoon climate system, we studied seasonal water‐use in eight differentPinus ponderosamontane forests distributed across a climate gradient with varying contributions from winter and summer precipitation. We collected oxygen isotopes from precipitation, soil, and xylem water during two contrasting hydrologic years to determine how trees differentially use winter versus summer precipitation sources. Most trees switched from using snowmelt water as the primary source during the early‐summer hyper‐arid period, to monsoon rainwater during the late‐summer. However, during the low snowpack year, which represents the most common climate phenomenon during the megadrought, trees at all sites used less summer rain when compared to the higher snowpack year, demonstrating a drought‐induced antecedent influence of winter precipitation on the uptake of summer rain. A possible mechanism to explain the antecedent effect is an earlier snow disappearance during the low snowpack year weakening hydrologic connectivity within the soil profile, decreasing the soil infiltration of summer rains. However, in years with higher snowpack, the snow lasts longer, and this can improve the hydrologic connectivity within the soil profile. As a result, there is more infiltration of summer rains into the soils. This can enhance the maintenance of active shallow fine‐root biomass during the period when snowpack disappears, and monsoon rains have yet to arrive. These findings provide insight into how the seasonal interactions between major seasonal climate systems influence forest tree water use in the face of an extreme megadrought.more » « less
An official website of the United States government
