skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Carbon Dioxide Concentrations and Efflux from Permanent, Semi-Permanent, and Temporary Subalpine Ponds
Small ponds account for a disproportionately high percentage of carbon dioxide emissions relative to their small surface area. It is therefore crucial to understand carbon flow in these ponds to refine the current global carbon budget, especially because climate change is affecting pond hydrology. High elevation ponds in the Elk Mountains of western Colorado are drying more frequently as the timing of snowmelt advances. We compared CO2 concentrations and fluxes among ponds of different hydroperiods over diel sampling periods during the course of the 2017 open-water period. CO2 concentrations were significantly negatively correlated with pond depth and averaged 77.6 ± 24.5 μmol L−1 (mean ± S.E.) across all ponds and sampling events. Ponds were up to twenty times supersaturated in CO2 with respect to the atmosphere. Flux was highly variable within individual ponds but correlated with time of sampling and was highest at night. Flux averaged 19.7 ± 18.8 mg CO2 m−2 h−1 across all ponds and sampling events. We also compared flux values obtained using modeled and empirical methods and found that widely-applied models of gas exchange rates using wind-based gas exchange (K) values yielded estimates of CO2 flux that were significantly higher than those obtained using the floating chamber approach, but estimates of CO2 flux using globally averaged convection-based K values were lower than those obtained using the floating chambers. Lastly, we integrated soil vs. water efflux measurements with long-term patterns in hydrology to predict how total season-long efflux might change under the more rapid drying regimes and longer seasons that are already occurring in these systems. Because soil CO2 efflux averaged 277.0 ± 49.0 mg CO2 m−2 h−1, temporary ponds emitted 674.1 ± 99.4 kg CO2 m−2 over the course of the 2017 season from ice-out to refreezing, which was over twice as much as permanent and semi-permanent ponds. Our results emphasize that contributions of CO2 from small ponds to the global carbon budget estimates will vary with pond hydroperiod and sampling methodology, which have been overlooked given that most previous estimates were collected from limited sampling periods and from pond waters alone. Furthermore, pond CO2 contributions are predicted to increase over time as pond areas transition from efflux from water to efflux from soil.  more » « less
Award ID(s):
1556914
PAR ID:
10091160
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Wetlands
ISSN:
0277-5212
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In 2019, we measured the Δ14C and δ13C of soil respired carbon dioxide (CO2) in Panamanian forests that are subject to either in situ experimental soil warming (4C above ambient temperature to 1.2 m depth) or in situ experimental drying (50% throughfall exclusion). The warming site and one drying site are both within the Barro Colorado Nature Monument in nearby and similar forests on similar soils, enabling direct comparison of warming and drying effects on soil CO2 efflux. A second drying experiment is on the northern side of the Panama Isthmus on infertile soils where mean annual precipitation is greater, representative of a broad geographic area of the tropics. Given the seasonality of these forests, we performed measurements at stages of the seasonal cycle for which we expected the largest variation in CO2 efflux between control and experimental plots based on previous studies – the wet season (October-December) and dry season (March/April) or dry-to-wet season transition (May). This dataset includes Δ14C and δ13C of in situ soil surface CO2 flux as well as CO2 flux rates, volumetric soil moisture, soil temperature, and calculated partitioning of the fraction of total soil respiration from heterotrophs vs roots at the time of isotope sampling in AllSites_SoilResp_14C_data.xlsx. This dataset also includes Δ14C and δ13C of bulk soil, density fractions, and CO2 respired during laboratory incubations in AllSites_bulk_soil14C.xlsx. Datafiles are also available in csv format. 
    more » « less
  2. httpsessopenarchiveorgeditorial-board (Ed.)
    Building healthy soils that store more carbon and reduce greenhouse gas (GHG) emissions while increasing food security is a multi-pronged climate action for the world. This work examines affordable technologies for rapidly assessing soil surface efflux of carbon dioxide quickly and accurately at multiple locations over short time periods (approximately 1 hr) in agricultural fields. Soil carbon dioxide efflux or respiration rate is known to be a strong function of soil texture, moisture content, and temperature. Thus, spatiotemporal variation of the efflux signal is complex and dynamic, particularly when soil texture and irrigation patterns are heterogenous. We use a combination of computational modeling and empirical measurement to study this problem at the UC Merced Experimental Smart Farm, on a roughly 2 ha track of flood-irrigated land. Using computation model (Hydrus 1d), we simulate soil conditions and CO2 emissions for a variety of ambient temperature and irrigation conditions. We calibrated the model parameters using efflux data obtained during multiple sampling campaigns using low-cost CO2 efflux chambers. Results indicate that relatively elevated emissions occur as key soil pore pathways drain following irrigation events. The timing of these emissions depends strongly on soil texture, with tighter clayey soils causing more dramatic “hot moments” and more smoothly draining sandy soils. While initial campaigns were carried out by researchers, future campaigns are being planned in which robotic micro-tractors will be equipped with the CO2 chambers and maneuvered using path planning algorithms programmed to adequately characterize the field-scale CO2 efflux while performing their primary agricultural functions. In this context, the farmer can monitor and achieve compliance with GHG emission goals with a minimal time investment. 
    more » « less
  3. Abstract The carbon dioxide (CO2) fluxes from headwater streams are not well quantified and could be a source of significant carbon, particularly in systems underlain by carbonate lithology. Also, the sensitivity of carbonate systems to changes in temperature will make these fluxes even more significant as climate changes. This study quantifies small-scale CO2 efflux and estimates annual CO2 emission from a headwater stream at the Konza Prairie Long-Term Ecological Research Site and Biological Station (Konza), in a complex terrain of horizontal, alternating limestones and shales with small-scale karst features. CO2 effluxes ranged from 2.2 to 214 g CO2 m−2 day−1 (mean: 20.9 CO2 m−2 day−1). Downstream of point groundwater discharge sources, CO2 efflux decreased, over 2 m, to 3–40% of the point-source flux, while δ13C-CO2 increased, ranging from −9.8 ‰ to −23.2 ‰ V-PDB. The δ13C-CO2 increase was not strictly proportional to the CO2 flux but related to the origin of vadose zone CO2. The high spatial and temporal variability of CO2 efflux from this headwater stream informs those doing similar measurements and those working on upscaling stream data, that local variability should be assessed to estimate the impact of headwater stream CO2 efflux on the global carbon cycle. 
    more » « less
  4. Abstract Salt marsh ponds expand and deepen over time, potentially reducing ecosystem carbon storage and resilience. The water filled volumes of ponds represent missing carbon due to prevented soil accumulation and removal by erosion and decomposition. Removal mechanisms have different implications as eroded carbon can be redistributed while decomposition results in loss. We constrained ponding effects on carbon dynamics in a New England marsh and determined whether expansion and deepening impact nearby soils by conducting geochemical characterizations of cores from three ponds and surrounding high marshes and models of wind‐driven erosion. Radioisotope profiles demonstrate that ponds are not depositional environments and that contemporaneous marsh accretion represents prevented accumulation accounting for 32%–42% of the missing carbon. Erosion accounted for 0%–38% and was bracketed using radioisotope inventories and wind‐driven resuspension models. Decomposition, calculated by difference, removes 22%–68%, and when normalized over pond lifespans, produces rates that agree with previous metabolism measurements. Pond surface soils contain new contributions from submerged primary producers and evidence of microbial alteration of underlying peat, as higher levels of detrital biomarkers and thermal stability indices, compared to the marsh. Below pond surface horizons, soil properties and organic matter composition were similar to the marsh, indicating that ponding effects are shallow. Soil bulk density, elemental content, and accretion rates were similar between marsh sites but different from ponds, suggesting that lateral effects are spatially confined. Consequently, ponds negatively impact ecosystem carbon storage but at current densities are not causing pervasive degradation of marshes in this system. 
    more » « less
  5. Abstract The dynamics of water and solutes were investigated in two northern bog ponds using sensor networks and discrete water samples. Embedded sensors monitored water level (S), precipitation (P), evaporation (E), water temperature (T) and specific conductivity (SC) in the peatlands and encircled ponds at 30 min time intervals from 2009 to 2015. Pond water chemistry was monitored seasonally from 2000 to 2020. Daily hydrographs and water budgets indicated that both bogs are ombrotrophic systems, perched above the local water table. Although the predominant flowpath for liquid water was precipitation → pond → peatland → underlying glacial deposits, evaporation accounted for 70% to 90% of water losses. High dissolved organic matter (DOM) in the ponds resulted from transient reversals of flowpath and from molecular diffusion across the peatland/pond interface (a tea bag effect). DOM of peatland origin dominated pond water chemistry, regulating the concentration of important metals, major nutrients and the acid–base status of both bog ponds. Elevated concentrations of Fe, Hg and MeHg in the ponds reflected ligand binding by DOM. The formation of DOM‐Fe‐PO4complexes likely accounted for >3‐fold higher P concentration relative to nearby clearwater lakes. Linear regression of dissolved organic carbon (DOC) against the anion deficit indicated that DOM contributed up to 6.6 mEq of strong acid per gramme carbon in pond waters. Winter maxima in the seasonal cycles of DOC, Ca, Mg, N, P, Hg and MeHg in both bog ponds were attributable, in large part, to salting out during ice formation. We conclude that multiple methods are needed to understand the dynamics of water and solutes in bog ecosystems. 
    more » « less