skip to main content


Title: Carbon Dioxide Concentrations and Efflux from Permanent, Semi-Permanent, and Temporary Subalpine Ponds
Small ponds account for a disproportionately high percentage of carbon dioxide emissions relative to their small surface area. It is therefore crucial to understand carbon flow in these ponds to refine the current global carbon budget, especially because climate change is affecting pond hydrology. High elevation ponds in the Elk Mountains of western Colorado are drying more frequently as the timing of snowmelt advances. We compared CO2 concentrations and fluxes among ponds of different hydroperiods over diel sampling periods during the course of the 2017 open-water period. CO2 concentrations were significantly negatively correlated with pond depth and averaged 77.6 ± 24.5 μmol L−1 (mean ± S.E.) across all ponds and sampling events. Ponds were up to twenty times supersaturated in CO2 with respect to the atmosphere. Flux was highly variable within individual ponds but correlated with time of sampling and was highest at night. Flux averaged 19.7 ± 18.8 mg CO2 m−2 h−1 across all ponds and sampling events. We also compared flux values obtained using modeled and empirical methods and found that widely-applied models of gas exchange rates using wind-based gas exchange (K) values yielded estimates of CO2 flux that were significantly higher than those obtained using the floating chamber approach, but estimates of CO2 flux using globally averaged convection-based K values were lower than those obtained using the floating chambers. Lastly, we integrated soil vs. water efflux measurements with long-term patterns in hydrology to predict how total season-long efflux might change under the more rapid drying regimes and longer seasons that are already occurring in these systems. Because soil CO2 efflux averaged 277.0 ± 49.0 mg CO2 m−2 h−1, temporary ponds emitted 674.1 ± 99.4 kg CO2 m−2 over the course of the 2017 season from ice-out to refreezing, which was over twice as much as permanent and semi-permanent ponds. Our results emphasize that contributions of CO2 from small ponds to the global carbon budget estimates will vary with pond hydroperiod and sampling methodology, which have been overlooked given that most previous estimates were collected from limited sampling periods and from pond waters alone. Furthermore, pond CO2 contributions are predicted to increase over time as pond areas transition from efflux from water to efflux from soil.  more » « less
Award ID(s):
1556914
NSF-PAR ID:
10091160
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Wetlands
ISSN:
0277-5212
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    While inundated, small ponds (< 1000 m2area) account for disproportionately large contributions of CO2efflux to the global carbon budget and also store carbon in anoxic sediments. However, pond hydrology is shifting toward increasingly dry conditions in alpine and temperate zones, which might lead to increased exposure of shallow pond sediments. We analyzed sediment CO2efflux rates in dried sediments of multiple ponds of varying hydrology and sediment characteristics at montane and subalpine elevations near the Rocky Mountain Biological Laboratory in Colorado. Average CO2efflux rates from exposed sediments, 331.5 ± 11.5 mmol m−2d−1at the montane sites and 142.8 ± 45.1 mmol m−2d−1at the subalpine sites, were 10 times higher than average CO2efflux rates from pond water. Principal components analysis to reduce dimensionality of sediment characteristics revealed that random inter‐pond differences rather than exposure timing or hydroperiod drove variation among sediments. In linear mixed effects models of CO2flux rates, significant predictors included sediment moisture and temperature, pH, total organic carbon, and organic matter content at all pond hydroperiod classifications and sites. However, the sediment characteristics explaining the most variance differed among sites and hydroperiods and included nitrate concentrations, pH, bulk density, and temperature. We conclude that pond sediments are heterogeneous both within and among ponds in close proximity, and drivers of relatively high CO2efflux rates differ among pond hydroperiods and elevations. This work emphasizes that local differences can impact predictions of CO2flux from lentic sediments which are becoming increasingly exposed.

     
    more » « less
  2. Abstract

    The carbon dioxide (CO2) fluxes from headwater streams are not well quantified and could be a source of significant carbon, particularly in systems underlain by carbonate lithology. Also, the sensitivity of carbonate systems to changes in temperature will make these fluxes even more significant as climate changes. This study quantifies small-scale CO2 efflux and estimates annual CO2 emission from a headwater stream at the Konza Prairie Long-Term Ecological Research Site and Biological Station (Konza), in a complex terrain of horizontal, alternating limestones and shales with small-scale karst features. CO2 effluxes ranged from 2.2 to 214 g CO2 m−2 day−1 (mean: 20.9 CO2 m−2 day−1). Downstream of point groundwater discharge sources, CO2 efflux decreased, over 2 m, to 3–40% of the point-source flux, while δ13C-CO2 increased, ranging from −9.8 ‰ to −23.2 ‰ V-PDB. The δ13C-CO2 increase was not strictly proportional to the CO2 flux but related to the origin of vadose zone CO2. The high spatial and temporal variability of CO2 efflux from this headwater stream informs those doing similar measurements and those working on upscaling stream data, that local variability should be assessed to estimate the impact of headwater stream CO2 efflux on the global carbon cycle.

     
    more » « less
  3. Abstract

    Salt marsh ponds expand and deepen over time, potentially reducing ecosystem carbon storage and resilience. The water filled volumes of ponds represent missing carbon due to prevented soil accumulation and removal by erosion and decomposition. Removal mechanisms have different implications as eroded carbon can be redistributed while decomposition results in loss. We constrained ponding effects on carbon dynamics in a New England marsh and determined whether expansion and deepening impact nearby soils by conducting geochemical characterizations of cores from three ponds and surrounding high marshes and models of wind‐driven erosion. Radioisotope profiles demonstrate that ponds are not depositional environments and that contemporaneous marsh accretion represents prevented accumulation accounting for 32%–42% of the missing carbon. Erosion accounted for 0%–38% and was bracketed using radioisotope inventories and wind‐driven resuspension models. Decomposition, calculated by difference, removes 22%–68%, and when normalized over pond lifespans, produces rates that agree with previous metabolism measurements. Pond surface soils contain new contributions from submerged primary producers and evidence of microbial alteration of underlying peat, as higher levels of detrital biomarkers and thermal stability indices, compared to the marsh. Below pond surface horizons, soil properties and organic matter composition were similar to the marsh, indicating that ponding effects are shallow. Soil bulk density, elemental content, and accretion rates were similar between marsh sites but different from ponds, suggesting that lateral effects are spatially confined. Consequently, ponds negatively impact ecosystem carbon storage but at current densities are not causing pervasive degradation of marshes in this system.

     
    more » « less
  4. Vernal ponds are ephemeral landscape features that experience intermittent flooding and drying, leading to variable saturation in underlying soils. Redox potential (Eh) is an important indicator of biogeochemical processes that changes in response to these hydrological shifts; however, high-resolution measurements of Ehin variably inundated environments remain sparse. In this study, the responses of soil Ehto ponding, drying, and rewetting of a vernal pond were investigated over a 5-month period from late spring through early autumn. Soil Ehwas measured at 10-min frequencies and at multiple soil depths (2–48 cm below the soil surface) in shallow and deep sections within the seasonally ponded lowland and in unsaturated soils of the surrounding upland. Over the study period, average Ehin surface soils (0–8 cm) was oxidizing in the upland (753 ± 79 mV) but relatively reducing in the shallow lowland (369 ± 49 mV) and deep lowland (198 ± 37 mV). Reducing conditions (Eh<300 mV) in surface soils prevailed for up to 6 days in the shallow lowland and up to 24 days in the deep lowland after surface water dried out. Intermittent reflooding resulted in multiple shifts between reducing and oxidizing conditions in the shallow lowland while the deep lowland remained reducing following reflooding. Soil Ehin the uplands was consistently oxidizing over the study period with transient increases in response to rain events. Reducing conditions in the lowland resulted in greater Fe-oxide dissolution and release of dissolved Fe and P into porewater than in the surrounding uplands. We determined that change in water depth alone was not a good indicator of soil Eh, and additional factors such as soil saturation and clay composition should be considered when predicting how Ehresponds to surface flooding and drying. These findings highlight the spatial and temporal variability of Ehwithin ponds and have implications for how soil processes and ecosystem function are impacted by shifts in hydrology at terrestrial-aquatic interfaces.

     
    more » « less
  5. The magnitude of stream and river carbon dioxide (CO 2 ) emission is affected by seasonal changes in watershed biogeochemistry and hydrology. Global estimates of this flux are, however, uncertain, relying on calculated values for CO 2 and lacking spatial accuracy or seasonal variations critical for understanding macroecosystem controls of the flux. Here, we compiled 5,910 direct measurements of fluvial CO 2 partial pressure and modeled them against watershed properties to resolve reach-scale monthly variations of the flux. The direct measurements were then combined with seasonally resolved gas transfer velocity and river surface area estimates from a recent global hydrography dataset to constrain the flux at the monthly scale. Globally, fluvial CO 2 emission varies between 112 and 209 Tg of carbon per month. The monthly flux varies much more in Arctic and northern temperate rivers than in tropical and southern temperate rivers (coefficient of variation: 46 to 95 vs. 6 to 12%). Annual fluvial CO 2 emission to terrestrial gross primary production (GPP) ratio is highly variable across regions, ranging from negligible (<0.2%) to 18%. Nonlinear regressions suggest a saturating increase in GPP and a nonsaturating, steeper increase in fluvial CO 2 emission with discharge across regions, which leads to higher percentages of GPP being shunted into rivers for evasion in wetter regions. This highlights the importance of hydrology, in particular water throughput, in routing terrestrial carbon to the atmosphere via the global drainage networks. Our results suggest the need to account for the differential hydrological responses of terrestrial–atmospheric vs. fluvial–atmospheric carbon exchanges in plumbing the terrestrial carbon budget. 
    more » « less