skip to main content


Title: The Role of the Greenland-Scotland Ridge in Step-wise Cooling of the Nordic Seas from the Middle to Late Miocene
Neogene ocean temperatures are characterized by sustained warmth during the mid-Miocene Climatic Optimum followed by gradual cooling through the late Miocene culminating in Northern Hemisphere glaciation in the early Pleistocene. While the magnitude of sea surface temperature (SST) cooling is enhanced at higher latitudes, existing records suggest that the timing is nearly synchronous across the world's oceans. However, the Nordic Seas, north of the Greenland-Scotland Ridge (GSR), experienced rapid cooling steps (14.5-14 Ma, 12.5-12 Ma, 8-6 Ma) that are out of sync with the global SST cooling trend. Here we present a new alkenone paleo-SST record from Ocean Drilling Program (ODP) site 985 in the western Norwegian Sea (66°56' N, 6°27' W) and investigate the relationships between rapid SST change, depth of the GSR, ocean circulation, and deep-water formation using proxy and model data. We find significant (p < 0.01) inverse relationships between the depth of the GSR and SSTs at ODP sites north of the ridge (985 and 907), positive relationships between GSR depth and the SST gradient across the ridge, and inverse relationships between deep water production and SST at ODP sites 985 and 907. In sum, these observations suggest that during global Miocene cooling, intervals of GSR deepening allowed for increased sea water exchange and an invigoration of deep-water production in the North Atlantic. We posit that enhanced surficial cyclonic flow in the Nordic Seas and a strengthened East Greenland Current caused rapid cooling in the western Nordic Seas. This cooling is consistent with Pliocene coupled climate model runs with altered tectonic boundary conditions simulating a deeper GSR, implying that this SST response to changes to GSR depth may be an important mechanism in high latitude Neogene climate. Furthermore, a strong linear relationship (r2 = 0.84) between ODP 985 SST and global deep ocean δ13C suggests that ocean circulation responses to tectonically forced variability in the GSR may have had an important impact on the Neogene carbon cycle.  more » « less
Award ID(s):
1757602
NSF-PAR ID:
10091199
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
American Geophysical Union, Fall Meeting 2018, abstract #PP13E-1364
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. The overturning streamfunction as measured at the OSNAP (Overturning in the Subpolar North Atlantic Program) mooring array represents the transformation of warm, salty Atlantic Water into cold, fresh North Atlantic Deep Water (NADW). The magnitude of the overturning at the OSNAP array can therefore be linked to the transformation by air–sea buoyancy fluxes and mixing in the region north of the OSNAP array. Here, we estimate these water mass transformations using observational-based, reanalysis-based and model-based datasets. Our results highlight that air–sea fluxes alone cannot account for the time-mean magnitude of the overturning at OSNAP, and therefore a residual mixing-driven transformation is required to explain the difference. A cooling by air–sea heat fluxes and a mixing-driven freshening in the Nordic Seas, Iceland Basin and Irminger Sea precondition the warm, salty Atlantic Water, forming subpolar mode water classes in the subpolar North Atlantic. Mixing in the interior of the Nordic Seas, over the Greenland–Scotland Ridge and along the boundaries of the Irminger Sea and Iceland Basin drive a water mass transformation that leads to the convergence of volume in the water mass classes associated with NADW. Air–sea buoyancy fluxes and mixing therefore play key and complementary roles in setting the magnitude of the overturning within the subpolar North Atlantic and Nordic Seas. This study highlights that, for ocean and climate models to realistically simulate the overturning circulation in the North Atlantic, the small-scale processes that lead to the mixing-driven formation of NADW must be adequately represented within the model's parameterisation scheme. 
    more » « less
  2. Abstract

    We reconstruct sea surface temperatures (SSTs) at Deep Sea Drilling Project Site 608 (42.836°N, 23.087°), north of the Azores Front, and Ocean Drilling Program Site 982 (57.516°N, 15.866°), under the North Atlantic Current, in order to track Miocene (23.1–5.3 Ma) development of North Atlantic surface waters. Mean annual SSTs from TEX86and UK′37proxy estimates at both sites were 10–15 °C higher than modern through the Miocene Climatic Optimum (17–14.5 Ma). During the global cooling of the Middle Miocene Climate Transition (~14.5–12.5 Ma), SSTs at midlatitude Site 608 cooled by ~6 °C, whereas high‐latitude Site 982 cooled by only ~2 °C, resulting in an ~4 Myr collapse of the SST gradient between the two sites. This regional pattern is inconsistent with an increased latitudinal surface temperature gradient, as generally associated with global cooling episodes linked to decreasingpCO2levels. Instead, the pattern is best explained by enhanced ocean heat transport into the high‐latitude North Atlantic superimposed on the global cooling trend, probably due to enhanced Atlantic meridional overturning circulation and/or a stronger North Atlantic Current. During global late Miocene cooling (~8–7 Ma), surface waters cooled by ~6 °C at Site 982 while minimal change occurred at Site 608, reestablishing the North Atlantic SST gradient. The collapse and reemergence of the SST gradient between the middle‐ and high‐latitude North Atlantic suggests that interaction between changes in regional ocean circulation and the global response to changes in greenhouse gas concentration was important in Miocene climate evolution.

     
    more » « less
  3. Abstract. The Arctic Mediterranean (AM) is the collective name forthe Arctic Ocean, the Nordic Seas, and their adjacent shelf seas. Water enters into thisregion through the Bering Strait (Pacific inflow) and through the passages across theGreenland–Scotland Ridge (Atlantic inflow) and is modified within the AM. The modifiedwaters leave the AM in several flow branches which are grouped into two differentcategories: (1) overflow of dense water through the deep passages across theGreenland–Scotland Ridge, and (2) outflow of light water – here termed surface outflow– on both sides of Greenland. These exchanges transport heat and salt into and out ofthe AM and are important for conditions in the AM. They are also part of the global oceancirculation and climate system. Attempts to quantify the transports by various methodshave been made for many years, but only recently the observational coverage has becomesufficiently complete to allow an integrated assessment of the AM exchanges based solelyon observations. In this study, we focus on the transport of water and have collecteddata on volume transport for as many AM-exchange branches as possible between 1993 and2015. The total AM import (oceanic inflows plusfreshwater) is found to be 9.1&thinsp;Sv (sverdrup,1&thinsp;Sv&thinsp;=106&thinsp;m3&thinsp;s−1) with an estimated uncertainty of 0.7&thinsp;Sv and hasthe amplitude of the seasonal variation close to 1&thinsp;Sv and maximum import in October.Roughly one-third of the imported water leaves the AM as surface outflow with theremaining two-thirds leaving as overflow. The overflow water is mainly produced frommodified Atlantic inflow and around 70&thinsp;% of the total Atlantic inflow is convertedinto overflow, indicating a strong coupling between these two exchanges. The surfaceoutflow is fed from the Pacific inflow and freshwater (runoff and precipitation), but isstill approximately two-thirds of modified Atlantic water. For the inflowbranches and the two main overflow branches (Denmark Strait and Faroe Bank Channel),systematic monitoring of volume transport has been established since the mid-1990s, andthis enables us to estimate trends for the AM exchanges as a whole. At the 95&thinsp;%confidence level, only the inflow of Pacific water through the Bering Strait showed astatistically significant trend, which was positive. Both the total AM inflow and thecombined transport of the two main overflow branches also showed trends consistent withstrengthening, but they were not statistically significant. They do suggest, however,that any significant weakening of these flows during the last two decades is unlikely andthe overall message is that the AM exchanges remained remarkably stable in the periodfrom the mid-1990s to the mid-2010s. The overflows are the densest source water for thedeep limb of the North Atlantic part of the meridional overturning circulation (AMOC),and this conclusion argues that the reported weakening of the AMOC was not due tooverflow weakening or reduced overturning in the AM. Although the combined data set hasmade it possible to establish a consistent budget for the AM exchanges, the observationalcoverage for some of the branches is limited, which introduces considerable uncertainty.This lack of coverage is especially extreme for the surface outflow through the DenmarkStrait, the overflow across the Iceland–Faroe Ridge, and the inflow over the Scottishshelf. We recommend that more effort is put into observing these flows as well asmaintaining the monitoring systems established for the other exchange branches.

     
    more » « less
  4. null (Ed.)
    International Ocean Discovery Program (IODP) Expedition 382, Iceberg Alley and Subantarctic Ice and Ocean Dynamics, investigated the long-term climate history of Antarctica, seeking to understand how polar ice sheets responded to changes in insolation and atmospheric CO2 in the past and how ice sheet evolution influenced global sea level and vice versa. Five sites (U1534–U1538) were drilled east of the Drake Passage: two sites at 53.2°S at the northern edge of the Scotia Sea and three sites at 57.4°–59.4°S in the southern Scotia Sea. We recovered continuously deposited late Neogene sediment to reconstruct the past history and variability in Antarctic Ice Sheet (AIS) mass loss and associated changes in oceanic and atmospheric circulation. The sites from the southern Scotia Sea (Sites U1536–U1538) will be used to study the Neogene flux of icebergs through “Iceberg Alley,” the main pathway along which icebergs calved from the margin of the AIS travel as they move equatorward into the warmer waters of the Antarctic Circumpolar Current (ACC). In particular, sediments from this area will allow us to assess the magnitude of iceberg flux during key times of AIS evolution, including the following: • The middle Miocene glacial intensification of the East Antarctic Ice Sheet, • The mid-Pliocene warm period, • The late Pliocene glacial expansion of the West Antarctic Ice Sheet, • The mid-Pleistocene transition (MPT), and • The “warm interglacials” and glacial terminations of the last 800 ky. We will use the geochemical provenance of iceberg-rafted detritus and other glacially eroded material to determine regional sources of AIS mass loss. We will also address interhemispheric phasing of ice sheet growth and decay, study the distribution and history of land-based versus marine-based ice sheets around the continent over time, and explore the links between AIS variability and global sea level. By comparing north–south variations across the Scotia Sea between the Pirie Basin (Site U1538) and the Dove Basin (Sites U1536 and U1537), Expedition 382 will also deliver critical information on how climate changes in the Southern Ocean affect ocean circulation through the Drake Passage, meridional overturning in the region, water mass production, ocean–atmosphere CO2 transfer by wind-induced upwelling, sea ice variability, bottom water outflow from the Weddell Sea, Antarctic weathering inputs, and changes in oceanic and atmospheric fronts in the vicinity of the ACC. Comparing changes in dust proxy records between the Scotia Sea and Antarctic ice cores will also provide a detailed reconstruction of changes in the Southern Hemisphere westerlies on millennial and orbital timescales for the last 800 ky. Extending the ocean dust record beyond the last 800 ky will help to evaluate dust-climate couplings since the Pliocene, the potential role of dust in iron fertilization and atmospheric CO2 drawdown during glacials, and whether dust input to Antarctica played a role in the MPT. The principal scientific objective of Subantarctic Front Sites U1534 and U1535 at the northern limit of the Scotia Sea is to reconstruct and understand how ocean circulation and intermediate water formation responds to changes in climate with a special focus on the connectivity between the Atlantic and Pacific basins, the “cold water route.” The Subantarctic Front contourite drift, deposited between 400 and 2000 m water depth on the northern flank of an east–west trending trough off the Chilean continental shelf, is ideally situated to monitor millennial- to orbital-scale variability in the export of Antarctic Intermediate Water beneath the Subantarctic Front. During Expedition 382, we recovered continuously deposited sediments from this drift spanning the late Pleistocene (from ~0.78 Ma to recent) and from the late Pliocene (~3.1–2.6 Ma). These sites are expected to yield a wide array of paleoceanographic records that can be used to interpret past changes in the density structure of the Atlantic sector of the Southern Ocean, track migrations of the Subantarctic Front, and give insights into the role and evolution of the cold water route over significant climate episodes, including the following: • The most recent warm interglacials of the late Pleistocene and • The intensification of Northern Hemisphere glaciation. 
    more » « less
  5. null (Ed.)
    International Ocean Discovery Program Expedition 382, Iceberg Alley and Subantarctic Ice and Ocean Dynamics, investigated the long-term climate history of Antarctica, seeking to understand how polar ice sheets responded to changes in insolation and atmospheric CO2 in the past and how ice sheet evolution influenced global sea level and vice versa. Five sites (U1534–U1538) were drilled east of the Drake Passage: two sites at 53.2°S at the northern edge of the Scotia Sea and three sites at 57.4°–59.4°S in the southern Scotia Sea. We recovered continuously deposited late Neogene sediments to reconstruct the past history and variability in Antarctic Ice Sheet (AIS) mass loss and associated changes in oceanic and atmospheric circulation. The sites from the southern Scotia Sea (Sites U1536–U1538) will be used to study the Neogene flux of icebergs through “Iceberg Alley,” the main pathway along which icebergs calved from the margin of the AIS travel as they move equatorward into the warmer waters of the Antarctic Circumpolar Current (ACC). In particular, sediments from this area will allow us to assess the magnitude of iceberg flux during key times of AIS evolution, including the following: • The middle Miocene glacial intensification of the East Antarctic Ice Sheet, • The mid-Pliocene warm period, • The late Pliocene glacial expansion of the West Antarctic Ice Sheet, • The mid-Pleistocene transition (MPT), and • The “warm interglacials” and glacial terminations of the last 800 ky. We will use the geochemical provenance of iceberg-rafted detritus and other glacially eroded material to determine regional sources of AIS mass loss. We will also address interhemispheric phasing of ice sheet growth and decay, study the distribution and history of land-based versus marine-based ice sheets around the continent over time, and explore the links between AIS variability and global sea level. By comparing north–south variations across the Scotia Sea between the Pirie Basin (Site U1538) and the Dove Basin (Sites U1536 and U1537), Expedition 382 will also deliver critical information on how climate changes in the Southern Ocean affect ocean circulation through the Drake Passage, meridional overturning in the region, water mass production, ocean–atmosphere CO2 transfer by wind-induced upwelling, sea ice variability, bottom water outflow from the Weddell Sea, Antarctic weathering inputs, and changes in oceanic and atmospheric fronts in the vicinity of the ACC. Comparing changes in dust proxy records between the Scotia Sea and Antarctic ice cores will also provide a detailed reconstruction of changes in the Southern Hemisphere westerlies on millennial and orbital timescales for the last 800 ky. Extending the ocean dust record beyond the last 800 ky will help to evaluate dust-climate couplings since the Pliocene, the potential role of dust in iron fertilization and atmospheric CO2 drawdown during glacials, and whether dust input to Antarctica played a role in the MPT. The principal scientific objective of Subantarctic Front Sites U1534 and U1535 at the northern limit of the Scotia Sea is to reconstruct and understand how intermediate water formation in the southwest Atlantic responds to changes in connectivity between the Atlantic and Pacific basins, the “cold water route.” The Subantarctic Front contourite drift, deposited between 400 and 2000 m water depth on the northern flank of an east–west trending trough off the Chilean continental shelf, is ideally situated to monitor millennial- to orbital-scale variability in the export of Antarctic Intermediate Water beneath the Subantarctic Front. During Expedition 382, we recovered continuously deposited sediments from this drift spanning the late Pleistocene (from ~0.78 Ma to recent) and from the late Pliocene (~3.1–2.6 Ma). These sites are expected to yield a wide array of paleoceanographic records that can be used to interpret past changes in the density structure of the Atlantic sector of the Southern Ocean, track migrations of the Subantarctic Front, and give insights into the role and evolution of the cold water route over significant climate episodes, including the following: • The most recent warm interglacials of the late Pleistocene and • The intensification of Northern Hemisphere glaciation. 
    more » « less