skip to main content

Title: Nordic Seas Hydrography in the Context of Arctic and North Atlantic Ocean Dynamics
Abstract The hydrography of the Nordic seas, a critical site for deep convective mixing, is controlled by various processes. On one hand, Arctic Ocean exports are thought to freshen the North Atlantic Ocean and the Nordic seas, as in the Great Salinity Anomalies (GSAs) of the 1970s–1990s. On the other hand, the salinity of the Nordic seas covaries with that of the Atlantic inflow across the Greenland–Scotland Ridge, leaving an uncertain role for Arctic Ocean exports. In this study, multidecadal time series (1950–2018) of the Nordic seas hydrography, Subarctic Front (SAF) in the North Atlantic Ocean [separating the water masses of the relatively cool, fresh Subpolar Gyre (SPG) from the warm, saline Subtropical Gyre (STG)], and atmospheric forcing are examined and suggest a unified view. The Nordic seas freshwater content is shown to covary on decadal time scales with the position of the SAF. When the SPG is strong, the SAF shifts eastward of its mean position, increasing the contribution of subpolar relative to subtropical source water to the Atlantic inflow, and vice versa. This suggests that Arctic Ocean fluxes primarily influence the hydrography of the Nordic seas via indirect means (i.e., by freshening the SPG). Case studies of two more » years with anomalous NAO conditions illustrate how North Atlantic Ocean dynamics relate to the position of the SAF (as indicated by hydrographic properties and stratification changes in the upper water column), and therefore to the properties of the Atlantic inflow and Nordic seas. « less
Award ID(s):
1950077 1949881
Publication Date:
Journal Name:
Journal of Physical Oceanography
Page Range or eLocation-ID:
101 to 114
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A subpolar marginal sea, like the Nordic seas, is a transition zone between the temperature-stratified subtropics (the alpha ocean) and the salinity-stratified polar regions (the beta ocean). An inflow of Atlantic Water circulates these seas as a boundary current that is cooled and freshened downstream, eventually to outflow as Deep and Polar Water. Stratification in the boundary region is dominated by a thermocline over the continental slope and a halocline over the continental shelves, separating Atlantic Water from Deep and Polar Water, respectively. A conceptual model is introduced for the circulation and water mass transformation in a subpolar marginal sea to explore the potential interaction between the alpha and beta oceans. Freshwater input into the shelf regions has a slight strengthening effect on the Atlantic inflow, but more prominently impacts the water mass composition of the outflow. This impact of freshwater, characterized by enhancing Polar Water outflow and suppressing Deep Water outflow, is strongly determined by the source location of freshwater. Concretely, perturbations in upstream freshwater sources, like the Baltic freshwater outflow into the Nordic seas, have an order of magnitude larger potential to impact water mass transports than perturbations in downstream sources like the Arctic freshwater outflow. Thesemore »boundary current dynamics are directly related to the qualitative stratification in transition zones and illustrate the interaction between the alpha and beta oceans.« less
  2. The Little Ice Age (LIA) was one of the coldest periods of the postglacial period in the Northern Hemisphere. Although there is increasing evidence that this time interval was associated with weakening of the subpolar gyre (SPG), the sequence of events that led to its weakened state has yet to be explained. Here, we show that the LIA was preceded by an exceptional intrusion of warm Atlantic water into the Nordic Seas in the late 1300s. The intrusion was a consequence of persistent atmospheric blocking over the North Atlantic, linked to unusually high solar activity. The warmer water led to the breakup of sea ice and calving of tidewater glaciers; weakening of the blocking anomaly in the late 1300s allowed the large volume of ice that had accumulated to be exported into the North Atlantic. This led to a weakening of the SPG, setting the stage for the subsequent LIA.

    Regional connectivity is important to the global climate salinity response, particularly because salinity anomalies do not have a damping feedback with atmospheric freshwater fluxes and may therefore be advected over long distances by ocean circulation, resulting in nonlocal influences. Climate model intercomparison experiments such as CMIP5 exhibit large uncertainty in some aspects of the salinity response, hypothesized here to be a result of ocean dynamics. We use two types of Lagrangian particle tracking experiments to investigate pathways of exchange for salinity anomalies. The first uses forward trajectories to estimate average transport time scales between water cycle regimes. The second uses reverse trajectories and a freshwater accumulation method to quantitatively identify remote influences in the salinity response. Additionally, we compare velocity fields with both resolved and parameterized eddies to understand the impact of eddy stirring on intergyre exchange. These experiments show that surface anomalies are readily exchanged within the ocean gyres by the mean circulation, but intergyre exchange is slower and largely eddy driven. These dynamics are used to analyze the North Atlantic salinity response to climate warming and water cycle intensification, where the system is broadly forced with fresh surface anomalies in the subpolar gyre and salty surface anomaliesmore »in the subtropical gyres. Under these competing forcings, strong intergyre eddy fluxes carry anomalously salty subtropical water into the subpolar gyre which balances out much of the local freshwater input.

    « less
  4. Abstract. The Arctic Mediterranean (AM) is the collective name forthe Arctic Ocean, the Nordic Seas, and their adjacent shelf seas. Water enters into thisregion through the Bering Strait (Pacific inflow) and through the passages across theGreenland–Scotland Ridge (Atlantic inflow) and is modified within the AM. The modifiedwaters leave the AM in several flow branches which are grouped into two differentcategories: (1) overflow of dense water through the deep passages across theGreenland–Scotland Ridge, and (2) outflow of light water – here termed surface outflow– on both sides of Greenland. These exchanges transport heat and salt into and out ofthe AM and are important for conditions in the AM. They are also part of the global oceancirculation and climate system. Attempts to quantify the transports by various methodshave been made for many years, but only recently the observational coverage has becomesufficiently complete to allow an integrated assessment of the AM exchanges based solelyon observations. In this study, we focus on the transport of water and have collecteddata on volume transport for as many AM-exchange branches as possible between 1993 and2015. The total AM import (oceanic inflows plusfreshwater) is found to be 9.1 Sv (sverdrup,1 Sv =106 m3 s−1) with an estimated uncertainty of 0.7 Sv and hasthe amplitudemore »of the seasonal variation close to 1 Sv and maximum import in October.Roughly one-third of the imported water leaves the AM as surface outflow with theremaining two-thirds leaving as overflow. The overflow water is mainly produced frommodified Atlantic inflow and around 70 % of the total Atlantic inflow is convertedinto overflow, indicating a strong coupling between these two exchanges. The surfaceoutflow is fed from the Pacific inflow and freshwater (runoff and precipitation), but isstill approximately two-thirds of modified Atlantic water. For the inflowbranches and the two main overflow branches (Denmark Strait and Faroe Bank Channel),systematic monitoring of volume transport has been established since the mid-1990s, andthis enables us to estimate trends for the AM exchanges as a whole. At the 95 %confidence level, only the inflow of Pacific water through the Bering Strait showed astatistically significant trend, which was positive. Both the total AM inflow and thecombined transport of the two main overflow branches also showed trends consistent withstrengthening, but they were not statistically significant. They do suggest, however,that any significant weakening of these flows during the last two decades is unlikely andthe overall message is that the AM exchanges remained remarkably stable in the periodfrom the mid-1990s to the mid-2010s. The overflows are the densest source water for thedeep limb of the North Atlantic part of the meridional overturning circulation (AMOC),and this conclusion argues that the reported weakening of the AMOC was not due tooverflow weakening or reduced overturning in the AM. Although the combined data set hasmade it possible to establish a consistent budget for the AM exchanges, the observationalcoverage for some of the branches is limited, which introduces considerable uncertainty.This lack of coverage is especially extreme for the surface outflow through the DenmarkStrait, the overflow across the Iceland–Faroe Ridge, and the inflow over the Scottishshelf. We recommend that more effort is put into observing these flows as well asmaintaining the monitoring systems established for the other exchange branches.

    « less
  5. Abstract The Beaufort high (BH) and its accompanying anticyclonic winds drive the Arctic Ocean’s Beaufort Gyre, the major freshwater reservoir of the Arctic Ocean. The Beaufort Gyre circulation and its capacity to accumulate or release freshwater rely on the BH intensity. The migration of Nordic seas cyclones into the Arctic has been hypothesized to moderate the strength of the BH. We explore this hypothesis by analyzing reanalysis sea level pressure fields to characterize the BH and identify and track cyclones north of 60°N during 1948–2019. A cluster analysis of Nordic seas cyclone trajectories reveals a western pathway (through the Arctic interior) associated with a relatively weak BH and an eastern pathway (along the Arctic periphery) associated with a relatively strong BH. Furthermore, we construct cyclone activity indices (CAIs) in the Arctic and Nordic seas that take into account multiple cyclone parameters (number, strength, and duration). There are significant correlations between the BH and the CAIs in the Arctic and Nordic seas during 1948–2019, with anomalously strong cyclone activity related to an anomalously weak BH, and vice versa. We show how the Arctic and Nordic seas CAIs experienced a regime shift toward increased cyclone activity between the first four decades analyzedmore »(1948–88) and the most recent three decades (1989–2019). Over the same two time periods, the BH exhibits a weakening. Increased cyclone activity and an accompanying weakening of the BH may be consistent with expectations in a warming Arctic and have implications for Beaufort Gyre dynamics and freshwater.« less