Abstract The Atlantic Meridional Overturning Circulation (AMOC), a key mechanism in the climate system, delivers warm and salty waters from the subtropical gyre to the subpolar gyre and Nordic Seas, where they are transformed into denser waters flowing southward in the lower AMOC limb. The prevailing hypothesis is that dense waters formed in the Labrador and Nordic Seas are the sources for the AMOC lower limb. However, recent observations reveal that convection in the Labrador Sea contributes minimally to the total overturning of the subpolar gyre. In this study, we show that the AMOC is instead primarily composed of waters formed in the Nordic Seas and Irminger and Iceland basins. A first direct estimate of heat and freshwater fluxes over these basins demonstrates that buoyancy forcing during the winter months can almost wholly account for the dense waters of the subpolar North Atlantic that are exported as part of the AMOC.
more »
« less
Mixing and air–sea buoyancy fluxes set the time-mean overturning circulation in the subpolar North Atlantic and Nordic Seas
Abstract. The overturning streamfunction as measured at the OSNAP (Overturning in the Subpolar North Atlantic Program) mooring array represents the transformation of warm, salty Atlantic Water into cold, fresh North Atlantic Deep Water (NADW). The magnitude of the overturning at the OSNAP array can therefore be linked to the transformation by air–sea buoyancy fluxes and mixing in the region north of the OSNAP array. Here, we estimate these water mass transformations using observational-based, reanalysis-based and model-based datasets. Our results highlight that air–sea fluxes alone cannot account for the time-mean magnitude of the overturning at OSNAP, and therefore a residual mixing-driven transformation is required to explain the difference. A cooling by air–sea heat fluxes and a mixing-driven freshening in the Nordic Seas, Iceland Basin and Irminger Sea precondition the warm, salty Atlantic Water, forming subpolar mode water classes in the subpolar North Atlantic. Mixing in the interior of the Nordic Seas, over the Greenland–Scotland Ridge and along the boundaries of the Irminger Sea and Iceland Basin drive a water mass transformation that leads to the convergence of volume in the water mass classes associated with NADW. Air–sea buoyancy fluxes and mixing therefore play key and complementary roles in setting the magnitude of the overturning within the subpolar North Atlantic and Nordic Seas. This study highlights that, for ocean and climate models to realistically simulate the overturning circulation in the North Atlantic, the small-scale processes that lead to the mixing-driven formation of NADW must be adequately represented within the model's parameterisation scheme.
more »
« less
- Award ID(s):
- 2038481
- PAR ID:
- 10437297
- Date Published:
- Journal Name:
- Ocean Science
- Volume:
- 19
- Issue:
- 3
- ISSN:
- 1812-0792
- Page Range / eLocation ID:
- 745 to 768
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Wintertime convection in the North Atlantic Ocean is a key component of the global climate as it produces dense waters at high latitudes that flow equatorward as part of the Atlantic Meridional Overturning Circulation (AMOC). Recent work has highlighted the dominant role of the Irminger and Iceland basins in the production of North Atlantic Deep Water. Dense water formation in these basins is mainly explained by buoyancy forcing that transforms surface waters to the deep waters of the AMOC lower limb. Air-sea fluxes and the ocean surface density field are both key determinants of the buoyancy-driven transformation. We analyze these contributions to the transformation in order to better understand the connection between atmospheric forcing and the densification of surface water. More precisely, we study the impact of air-sea fluxes and the ocean surface density field on the transformation of subpolar mode water (SPMW) in the Iceland Basin, a water mass that “pre-conditions” dense water formation downstream. Analyses using 40 years of observations (1980–2019) reveal that the variance in SPMW transformation is mainly influenced by the variance in density at the ocean surface. This surface density is set by a combination of advection, wind-driven upwelling and surface fluxes. Our study shows that the latter explains ∼ 30 % of the variance in outcrop area as expressed by the surface area between the outcropped SPMW isopycnals. The key role of the surface density in SPMW transformation partly explains the unusually large SPMW transformation in winter 2014–2015 over the Iceland Basin.more » « less
-
To provide an observational basis for the Intergovernmental Panel on Climate Change projections of a slowing Atlantic meridional overturning circulation (MOC) in the 21st century, the Overturning in the Subpolar North Atlantic Program (OSNAP) observing system was launched in the summer of 2014. The first 21-month record reveals a highly variable overturning circulation responsible for the majority of the heat and freshwater transport across the OSNAP line. In a departure from the prevailing view that changes in deep water formation in the Labrador Sea dominate MOC variability, these results suggest that the conversion of warm, salty, shallow Atlantic waters into colder, fresher, deep waters that move southward in the Irminger and Iceland basins is largely responsible for overturning and its variability in the subpolar basin.more » « less
-
To provide an observational basis for the Intergovernmental Panel on Climate Change projections of a slowing Atlantic meridional overturning circulation (MOC) in the 21st century, the Overturning in the Subpolar North Atlantic Program (OSNAP) observing system was launched in the summer of 2014. The first 21-month record reveals a highly variable overturning circulation responsible for the majority of the heat and freshwater transport across the OSNAP line. In a departure from the prevailing view that changes in deep water formation in the Labrador Sea dominate MOC variability, these results suggest that the conversion of warm, salty, shallow Atlantic waters into colder, fresher, deep waters that move southward in the Irminger and Iceland basins is largely responsible for overturning and its variability in the subpolar basin.more » « less
-
Abstract A recent study using the first 21 months of the OSNAP time series revealed that the export of dense waters in the eastern subpolar North Atlantic―as part of the Atlantic Meridional Overturning Circulation (MOC)―can be almost wholly attributed to surface‐forced water mass transformation (SFWMT) in the Irminger and Iceland basins, thus suggesting a minor role for other means of transformation, such as diapycnal mixing. To understand whether this result is valid over a period that exceeds the current observational record, we use four different ocean reanalysis products to investigate the relationship between surface buoyancy forcing and dense water production in this region. We also reexplore this relationship with the now available 6‐year OSNAP time series. Our analysis finds that although surface transformation in the eastern subpolar gyre dominates the production of deep waters, mixing processes downstream of the Greenland Scotland Ridge are also responsible for the production of waters carried within the AMOC's lower limb both in the observations and reanalyses. Further analysis of the reanalyses shows that SFWMT partly explains MOC interannual variability, the remaining portion can be attributed to basin storage and mixing. Compared to the observations, the reanalyses exhibit stronger MOC variance but comparable SFWMT variance on interannual timescales.more » « less