skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Generalized Bilinear Deep Convolutional Neural Networks for Multimodal Biometric Identification
In this paper, we propose to employ a bank of modality-dedicated Convolutional Neural Networks (CNNs), fuse, train, and optimize them together for person classification tasks. A modality-dedicated CNN is used for each modality to extract modality-specific features. We demonstrate that, rather than spatial fusion at the convolutional layers, the fusion can be performed on the outputs of the fully-connected layers of the modality-specific CNNs without any loss of performance and with significant reduction in the number of parameters. We show that, using multiple CNNs with multimodal fusion at the feature-level, we significantly outperform systems that use unimodal representation. We study weighted feature, bilinear, and compact bilinear feature-level fusion algorithms for multimodal biometric person identification. Finally, We propose generalized compact bilinear fusion algorithm to deploy both the weighted feature fusion and compact bilinear schemes. We provide the results for the proposed algorithms on three challenging databases: CMU Multi-PIE, BioCop, and BIOMDATA.  more » « less
Award ID(s):
1650474
PAR ID:
10091242
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
IEEE International Conference on Image Processing (ICIP)
Page Range / eLocation ID:
763 to 767
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, we propose a deep multimodal fusion network to fuse multiple modalities (face, iris, and fingerprint) for person identification. The proposed deep multimodal fusion algorithm consists of multiple streams of modality-specific Convolutional Neural Networks (CNNs), which are jointly optimized at multiple feature abstraction levels. Multiple features are extracted at several different convolutional layers from each modality-specific CNN for joint feature fusion, optimization, and classification. Features extracted at different convolutional layers of a modality-specific CNN represent the input at several different levels of abstract representations. We demonstrate that an efficient multimodal classification can be accomplished with a significant reduction in the number of network parameters by exploiting these multi-level abstract representations extracted from all the modality-specific CNNs. We demonstrate an increase in multimodal person identification performance by utilizing the proposed multi-level feature abstract representations in our multimodal fusion, rather than using only the features from the last layer of each modality-specific CNNs. We show that our deep multi-modal CNNs with multimodal fusion at several different feature level abstraction can significantly outperform the unimodal representation accuracy. We also demonstrate that the joint optimization of all the modality-specific CNNs excels the score and decision level fusions of independently optimized CNNs. 
    more » « less
  2. Deformable Convolutional Networks (DCN) have been proposed as a powerful tool to boost the representation power of Convolutional Neural Networks (CNN) in computer vision tasks via adaptive sampling of the input feature map. Much like vision transformers, DCNs utilize a more flexible inductive bias than standard CNNs and have also been shown to improve performance of particular models. For example, drop-in DCN layers were shown to increase the AP score of Mask RCNN by 10.6 points while introducing only 1% additional parameters and FLOPs, improving the state-of-the art model at the time of publication. However, despite evidence that more DCN layers placed earlier in the network can further improve performance, we have not seen this trend continue with further scaling of deformations in CNNs, unlike for vision transformers. Benchmarking experiments show that a realistically sized DCN layer (64H×64W, 64 in-out channel) incurs a 4× slowdown on a GPU platform, discouraging the more ubiquitous use of deformations in CNNs. These slowdowns are caused by the irregular input-dependent access patterns of the bilinear interpolation operator, which has a disproportionately low arithmetic intensity (AI) compared to the rest of the DCN. To address the disproportionate slowdown of DCNs and enable their expanded use in CNNs, we propose DefT, a series of workload-aware optimizations for DCN kernels. DefT identifies performance bottlenecks in DCNs and fuses specific operators that are observed to limit DCN AI. Our approach also uses statistical information of DCN workloads to adapt the workload tiling to the DCN layer dimensions, minimizing costly out-of-boundary input accesses. Experimental results show that DefT mitigates up to half of DCN slowdown over the current-art PyTorch implementation. This translates to a layerwise speedup of up to 134% and a reduction of normalized training time of 46% on a fully DCN-enabled ResNet model. 
    more » « less
  3. Modality fusion is a cornerstone of multimodal learning, enabling information integration from diverse data sources. However, vanilla fusion methods are limited by (1) inability to account for heterogeneous interactions between modalities and (2) lack of interpretability in uncovering the multimodal interactions inherent in the data. To this end, we propose I2MoE (Interpretable Multimodal Interaction-aware Mixture of Experts), an end-to-end MoE framework designed to enhance modality fusion by explicitly modeling diverse multimodal interactions, as well as providing interpretation on a local and global level. First, I2MoE utilizes different interaction experts with weakly supervised interaction losses to learn multimodal interactions in a data-driven way. Second, I2MoE deploys a reweighting model that assigns importance scores for the output of each interaction expert, which offers sample-level and dataset-level interpretation. Extensive evaluation of medical and general multimodal datasets shows that I2MoE is flexible enough to be combined with different fusion techniques, consistently improves task performance, and provides interpretation across various real-world scenarios. 
    more » « less
  4. Bilinear pooling has been recently proposed as a feature encoding layer, which can be used after the convolutional layers of a deep network, to improve performance in multiple vision tasks. Different from conventional global average pooling or fully connected layer, bilinear pooling gathers 2nd order information in a translation invariant fashion. However, a serious drawback of this family of pooling layers is their dimensionality explosion. Approximate pooling methods with compact properties have been explored towards resolving this weakness. Additionally, recent results have shown that significant performance gains can be achieved by adding 1st order information and applying matrix normalization to regularize unstable higher order information. However, combining compact pooling with matrix normalization and other order information has not been explored until now. In this paper, we unify bilinear pooling and the global Gaussian embedding layers through the empirical moment matrix. In addition, we propose a novel sub-matrix square-root layer, which can be used to normalize the output of the convolution layer directly and mitigate the dimensionality problem with off-the-shelf compact pooling methods. Our experiments on three widely used finegrained classification datasets illustrate that our proposed architecture, MoNet, can achieve similar or better performance than with the state-of-art G2DeNet. Furthermore, when combined with compact pooling technique, MoNet obtains comparable performance with encoded features with 96% less dimensions. 
    more » « less
  5. Human state recognition is a critical topic with pervasive and important applications in human–machine systems. Multimodal fusion, which entails integrating metrics from various data sources, has proven to be a potent method for boosting recognition performance. Although recent multimodal-based models have shown promising results, they often fall short in fully leveraging sophisticated fusion strategies essential for modeling adequate cross-modal dependencies in the fusion representation. Instead, they rely on costly and inconsistent feature crafting and alignment. To address this limitation, we propose an end-to-end multimodal transformer framework for multimodal human state recognition called Husformer. Specifically, we propose using cross-modal transformers, which inspire one modality to reinforce itself through directly attending to latent relevance revealed in other modalities, to fuse different modalities while ensuring sufficient awareness of the cross-modal interactions introduced. Subsequently, we utilize a self-attention transformer to further prioritize contextual information in the fusion representation. Extensive experiments on two human emotion corpora (DEAP and WESAD) and two cognitive load datasets [multimodal dataset for objective cognitive workload assessment on simultaneous tasks (MOCAS) and CogLoad] demonstrate that in the recognition of the human state, our Husformer outperforms both state-of-the-art multimodal baselines and the use of a single modality by a large margin, especially when dealing with raw multimodal features. We also conducted an ablation study to show the benefits of each component in Husformer. Experimental details and source code are available at https://github.com/SMARTlab-Purdue/Husformer. 
    more » « less