The COVID-19 pandemic has intensified the need for home-based cardiac health monitoring systems. Despite advancements in electrocardiograph (ECG) and phonocardiogram (PCG) wearable sensors, accurate heart sound segmentation algorithms remain understudied. Existing deep learning models, such as convolutional neural networks (CNN) and recurrent neural networks (RNN), struggle to segment noisy signals using only PCG data. We propose a two-step heart sound segmentation algorithm that analyzes synchronized ECG and PCG signals. The first step involves heartbeat detection using a CNN-LSTM-based model on ECG data, and the second step focuses on beat-wise heart sound segmentation with a 1D U-Net that incorporates multi-modal inputs. Our method leverages temporal correlation between ECG and PCG signals to enhance segmentation performance. To tackle the label-hungry issue in AI-supported biomedical studies, we introduce a segment-wise contrastive learning technique for signal segmentation, overcoming the limitations of traditional contrastive learning methods designed for classification tasks. We evaluated our two-step algorithm using the PhysioNet 2016 dataset and a private dataset from Bayland Scientific, obtaining a 96.43 F1 score on the former. Notably, our segment-wise contrastive learning technique demonstrated effective performance with limited labeled data. When trained on just 1% of labeled PhysioNet data, the model pre-trained on the full unlabeled dataset only dropped 2.88 in the F1 score, outperforming the SimCLR method. Overall, our proposed algorithm and learning technique present promise for improving heart sound segmentation and reducing the need for labeled data.
more »
« less
ECG-based Human Authentication using High-level Spectro-temporal Signal Features
Electrocardiography (ECG) is the process of recording the electrical activity of the human heart over time using electrodes that are placed over the skin. While the primary usage of electrocardiograms, the recorded signals, has been focused on the check of signs of heart-related diseases, recent studies have moved also toward their usage for human authentication. Thus, an ECG signal can be unique enough to be used independently as a biometric modality. In addition to its inherent liveness detection, it is easy to collect and can be easily captured either via sensors attached to the human body (fingertips, chest, wrist) or even passively using wireless sensors. In this paper, we propose a novel approach that exploits the spectro-temporal dynamic characteristics of the ECG signal to establish personal recognition system using both short-time Fourier transform (STFT) and generalized Morse wavelets (CWT). This process results in enriching the information extracted from the original ECG signal that is inserted in a 2D convolutional neural network (CNN) which extracts higher level and subject-specific ECG-based features for each individual. To validate our proposed CNN model, we performed nested cross-validation using eight different ECG databases. These databases are considered challenging since they include both normal and abnormal heartbeats as well as a dynamic number of subjects. Our proposed algorithms yield superior performance when compared to other state-ofart approaches discussed in the literature, i.e. the STFT-based one achieves an average identification rate, equal error rate (EER), and area under curve (AUC) of 97.86%, 0.0268, and 0.9933 respectively, whereas the CWT achieves comparable to STFT results in 97.5%, 0.0386, and 0.9882 respectively.
more »
« less
- Award ID(s):
- 1650474
- PAR ID:
- 10091248
- Date Published:
- Journal Name:
- IEEE International Conference on Big Data (Big Data)
- Page Range / eLocation ID:
- 4984 to 4993
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Arrhythmia is an abnormal heart rhythm that occurs due to the improper operation of the electrical impulses that coordinate the heartbeats. It is one of the most well-known heart conditions (including coronary artery disease, heart failure etc.) that is experienced by millions of people around the world. While there are several types of arrhythmias, not all of them are dangerous or harmful. However, there are arrhythmias that can often lead to death in minutes (e.g, ventricular fibrillation and ventricular tachycardia) even in young people. Thus, the detection of arrhythmia is critical for stopping and reversing its progression and for increasing longevity and life quality. While a doctor can perform different heart-monitoring tests specific to arrhythmias, the electrocardiogram (ECG) is one of the most common ones used either independently or in combination with other tests (to only detect, e.g. echocardiogram, or trigger arrhythmia and, then, detect, e.g. stress test). We propose a machine learning approach that augments the traditional arrhythmia detection approaches via our automatic arrhythmia classification system. It utilizes the texture of the ECG signal in both the temporal and spectro-temporal domains to detect and classify four types of heartbeats. The original ECG signal is first preprocessed, and then, the R-peaks associated with heartbeat estimation are identified. Next, 1D local binary patterns (LBP) in the temporal domain are utilized, while 2D LBPs and texture-based features extracted by a grayscale co-occurrence matrix (GLCM) are utilized in the spectro-temporal domain using the short-time Fourier transform (STFT) and Morse wavelets. Finally, different classifiers, as well as different ECG lead configurations are examined before we determine our proposed time-frequency SVM model, which obtains a maximum accuracy of 99.81%, sensitivity of 98.17%, and specificity of 99.98% when using a 10 cross-validation on the MIT-BIH database.more » « less
-
null (Ed.)Electrocardiogram (ECG) signal is the most commonly used non-invasive tool in the assessment of cardiovascular diseases. Segmentation of the ECG signal to locate its constitutive waves, in particular the R-peaks, is a key step in ECG processing and analysis. Over the years, several segmentation and QRS complex detection algorithms have been proposed with different features; however, their performance highly depends on applying preprocessing steps which makes them unreliable in realtime data analysis of ambulatory care settings and remote monitoring systems, where the collected data is highly noisy. Moreover, some issues still remain with the current algorithms in regard to the diverse morphological categories for the ECG signal and their high computation cost. In this paper, we introduce a novel graph-based optimal changepoint detection (GCCD) method for reliable detection of Rpeak positions without employing any preprocessing step. The proposed model guarantees to compute the globally optimal changepoint detection solution. It is also generic in nature and can be applied to other time-series biomedical signals. Based on the MIT-BIH arrhythmia (MIT-BIH-AR) database, the proposed method achieves overall sensitivity Sen = 99.76, positive predictivity PPR = 99.68, and detection error rate DER = 0.55 which are comparable to other state-of-the-art approaches.more » « less
-
Background: Monitoring glucose excursions is important in diabetes management. This can be achieved using continuous glucose monitors (CGMs). However, CGMs are expensive and invasive. Thus, alternative low-cost noninvasive wearable sensors capable of predicting glycemic excursions could be a game changer to manage diabetes. Methods: In this article, we explore two noninvasive sensor modalities, electrocardiograms (ECGs) and accelerometers, collected on five healthy participants over two weeks, to predict both hypoglycemic and hyperglycemic excursions. We extract 29 features encompassing heart rate variability features from the ECG, and time- and frequency-domain features from the accelerometer. We evaluated two machine-learning approaches to predict glycemic excursions: a classification model and a regression model. Results: The best model for both hypoglycemia and hyperglycemia detection was the regression model based on ECG and accelerometer data, yielding 76% sensitivity and specificity for hypoglycemia and 79% sensitivity and specificity for hyperglycemia. This had an improvement of 5% in sensitivity and specificity for both hypoglycemia and hyperglycemia when compared with using ECG data alone. Conclusions: Electrocardiogram is a promising alternative not only to detect hypoglycemia but also to predict hyperglycemia. Supplementing ECG data with contextual information from accelerometer data can improve glucose prediction.more » « less
-
Abstract Recent developments of micro‐sensors and flexible electronics allow for the manufacturing of health monitoring devices, including electrocardiogram (ECG) detection systems for inpatient monitoring and ambulatory health diagnosis, by mounting the device on the chest. Although some commercial devices in reported articles show examples of a portable recording of ECG, they lose valuable data due to significant motion artifacts. Here, a new class of strain‐isolating materials, hybrid interfacial physics, and soft material packaging for a strain‐isolated, wearable soft bioelectronic system (SIS) is reported. The fundamental mechanism of sensor‐embedded strain isolation is defined through a combination of analytical and computational studies and validated by dynamic experiments. Comprehensive research of hard‐soft material integration and isolation mechanics provides critical design features to minimize motion artifacts that can occur during both mild and excessive daily activities. A wireless, fully integrated SIS that incorporates a breathable, perforated membrane can measure real‐time, continuous physiological data, including high‐quality ECG, heart rate, respiratory rate, and activities. In vivo demonstration with multiple subjects and simultaneous comparison with commercial devices captures the SIS's outstanding performance, offering real‐world, continuous monitoring of the critical physiological signals with no data loss over eight consecutive hours in daily life, even with exaggerated body movements.more » « less
An official website of the United States government

