skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Strain‐Isolating Materials and Interfacial Physics for Soft Wearable Bioelectronics and Wireless, Motion Artifact‐Controlled Health Monitoring
Abstract Recent developments of micro‐sensors and flexible electronics allow for the manufacturing of health monitoring devices, including electrocardiogram (ECG) detection systems for inpatient monitoring and ambulatory health diagnosis, by mounting the device on the chest. Although some commercial devices in reported articles show examples of a portable recording of ECG, they lose valuable data due to significant motion artifacts. Here, a new class of strain‐isolating materials, hybrid interfacial physics, and soft material packaging for a strain‐isolated, wearable soft bioelectronic system (SIS) is reported. The fundamental mechanism of sensor‐embedded strain isolation is defined through a combination of analytical and computational studies and validated by dynamic experiments. Comprehensive research of hard‐soft material integration and isolation mechanics provides critical design features to minimize motion artifacts that can occur during both mild and excessive daily activities. A wireless, fully integrated SIS that incorporates a breathable, perforated membrane can measure real‐time, continuous physiological data, including high‐quality ECG, heart rate, respiratory rate, and activities. In vivo demonstration with multiple subjects and simultaneous comparison with commercial devices captures the SIS's outstanding performance, offering real‐world, continuous monitoring of the critical physiological signals with no data loss over eight consecutive hours in daily life, even with exaggerated body movements.  more » « less
Award ID(s):
2024742
PAR ID:
10448551
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Functional Materials
Volume:
31
Issue:
36
ISSN:
1616-301X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Stress is one of the main causes that increase the risk of serious health problems. Recent wearable devices have been used to monitor stress levels via electrodermal activities on the skin. Although many biosensors provide adequate sensing performance, they still rely on uncomfortable, partially flexible systems with rigid electronics. These devices are mounted on either fingers or palms, which hinders a continuous signal monitoring. A fully‐integrated, stretchable, wireless skin‐conformal bioelectronic (referred to as “SKINTRONICS”) is introduced here that integrates soft, multi‐layered, nanomembrane sensors and electronics for continuous and portable stress monitoring in daily life. The all‐in‐one SKINTRONICS is ultrathin, highly soft, and lightweight, which overall offers an ergonomic and conformal lamination on the skin. Stretchable nanomembrane electrodes and a digital temperature sensor enable highly sensitive monitoring of galvanic skin response (GSR) and temperature. A set of comprehensive signal processing, computational modeling, and experimental study provides key aspects of device design, fabrication, and optimal placing location. Simultaneous comparison with two commercial stress monitors captures the enhanced performance of SKINTRONICS in long‐term wearability, minimal noise, and skin compatibility. In vivo demonstration of continuous stress monitoring in daily life reveals the unique capability of the soft device as a real‐world applicable stress monitor. 
    more » « less
  2. null (Ed.)
    Smart bracelets able to interpret the wearer's emotional state and communicate it to a remote decision-support facility will have broad applications in healthcare, elder care, the military, and other fields. While there are existing commercial embedded devices, such as the Apple Watch, that have health-monitoring sensors, such devices cannot sufficiently support a real-time health-monitoring system with battery-efficient remote data delivery. Ongoing R&D is developing solutions capable of monitoring multiple psycho-physiological signals. Possible hardware configurations include wrist-worn devices and sensors across an augmented reality headset (e.g., HoloLens 2). The device should carry an array of sensors of psycho-physiological signals, including a galvanic skin response sensor, motion sensor, skin temperature sensor, and a heart rate sensor. Output from these sensors can be intelligently fused to monitor the affective state and to determine specific trigger events for the wearer. To enable real-time remote monitoring applications, the device needs to be low-power to allow persistent monitoring while prolonging usage before recharging. For many applications, specialized sensor arrays are required, e.g. a galvanic skin response sensor. An application-flexible device would allow adding/removing sensors and would provide a choice of communication modules (e.g., Bluetooth 5.0 low-energy vs ZigBee). Appropriate configurations of the device would support applications in military health monitoring, drug-addiction mitigation, autistic trigger monitoring, and augmented reality exploration. A configuration example is: motion sensors (3-axis accelerometers, gyroscopes, and magnetometers to track steps, falls, and energy usage), a heart-rate sensor (e.g., an optical-based heart rate sensor with a single monitoring zone using the process of photoplethysmography (PPS)), at least a Bluetooth 5.0 (but a different communication device may be needed depending on the use case), and flash memory to temporarily store data when the device is not remotely communicating. The wearables field has greatly advanced in the quality of sensors; the fusion of multi-sensor data is the current frontier. 
    more » « less
  3. Sleep is a vital physiological state that significantly impacts overall health. Continuous monitoring of sleep posture, heart rate, respiratory rate, and body movement is crucial for diagnosing and managing sleep disorders. Current monitoring solutions often disrupt natural sleep due to discomfort or raise privacy and instrumentation concerns. We introduce PillowSense, a fabric-based sleep monitoring system seamlessly integrated into a pillowcase. PillowSense utilizes a dual-layer fabric design. The top layer comprises conductive fabrics for sensing electrocardiogram (ECG) and surface electromyogram (sEMG), while the bottom layer features pressure-sensitive fabrics to monitor sleep location and movement. The system processes ECG and sEMG signals sequentially to infer multiple sleep variables and incorporates an adversarial neural network to enhance posture classification accuracy. We fabricate prototypes using off-the-shelf hardware and conduct both lab-based and in-the-wild longitudinal user studies to evaluate the system's effectiveness. Across 151 nights and 912.2 hours of real-world sleep data, the system achieves an F1 score of 88% for classifying seven sleep postures, and clinically-acceptable accuracy in vital sign monitoring. PillowSense's comfort, washability, and robustness in multi-user scenarios underscore its potential for unobtrusive, large-scale sleep monitoring. 
    more » « less
  4. A photoplethysmography (PPG) is an uncomplicated and inexpensive optical technique widely used in the healthcare domain to extract valuable health-related information, e.g., heart rate variability, blood pressure, and respiration rate. PPG signals can easily be collected continuously and remotely using portable wearable devices. However, these measuring devices are vulnerable to motion artifacts caused by daily life activities. The most common ways to eliminate motion artifacts use extra accelerometer sensors, which suffer from two limitations: i) high power consumption and ii) the need to integrate an accelerometer sensor in a wearable device (which is not required in certain wearables). This paper proposes a low-power non-accelerometer-based PPG motion artifacts removal method outperforming the accuracy of the existing methods. We use Cycle Generative Adversarial Network to reconstruct clean PPG signals from noisy PPG signals. Our novel machine-learning-based technique achieves 9.5 times improvement in motion artifact removal compared to the state-of-the-art without using extra sensors such as an accelerometer, which leads to 45% improvement in energy efficiency. 
    more » « less
  5. This article presents a computational solution that enables continuous cardiac monitoring through cross-modality inference of electrocardiogram (ECG). While some smartwatches now allow users to obtain a 30-s ECG test by tapping a built-in bio-sensor, these short-term ECG tests often miss intermittent and asymptomatic abnormalities of cardiac functions. It is also infeasible to expect persistently active user participation for long-term continuous cardiac monitoring in order to capture these and other types of cardiac abnormalities. To alleviate the need for continuous user attention and active participation, we design a lightweight neural network that infers ECG from the photoplethysmogram (PPG) signal sensed at the skin surface by a wearable optical sensor. We also develop a diagnosis-oriented training strategy to enable the neural network to capture the pathological features of ECG, aiming to increase the utility of reconstructed ECG signals for screening cardiovascular diseases (CVDs). We also leverage model interpretation to obtain insights from data-driven models, for example, to reveal some associations between CVDs and ECG/PPG and to demonstrate how the neural network copes with motion artifacts in the ambulatory application. The experimental results on three datasets demonstrate the feasibility of inferring ECG from PPG, achieving a high fidelity of ECG reconstruction with only about 40000 parameters. 
    more » « less