Modeling individual-specific gait dynamics based on kinematic data could aid the development of gait rehabilitation robotics by enabling robots to predict the user’s gait kinematics with and without external inputs, such as mechanical or electrical perturbations. Here we address a current limitation of data-driven gait models, which do not yet predict human gait dynamics nor responses to perturbations. We used Switched Linear Dynamical Systems (SLDS) to model joint angle kinematic data from healthy individuals walking on a treadmill during normal gait and during gait perturbed by functional electrical stimulation (FES) to the ankle muscles. Our SLDS models were able to generate joint angle trajectories in each of four gait phases, as well as across an entire gait cycle, given initial conditions and gait phase information. Because the SLDS dynamics matrices encoded significant coupling across joints that differed across individuals, we compared the SLDS predictions to that of a kinematic model, where the joint angles were independent. Joint angle trajectories generated by SLDS and kinematic models were similar over time horizons of a few milliseconds, but SLDS models provided better predictions of gait kinematics over time horizons of up to a second. We also demonstrated that SLDS models can infer and predict individual-specific responses to FES during swing phase. As such, SLDS models may be a promising approach for online estimation and control of and human gait dynamics, allowing robotic control strategies to be tailored to an individual’s specific gait coordination patterns.
more »
« less
Identifying Gait Phases from Joint Kinematics during Walking with Switched Linear Dynamical Systems*
Human-robot interaction (HRI) for gait rehabilitation would benefit from models of data-driven gait models that account for gait phases and gait dynamics. Here we address the current limitation in gait models driven by kinematic data, which do not model interlimb gait dynamics and have not been shown to precisely identify gait events. We used Switched Linear Dynamical Systems (SLDS) to model joint angle kinematic data from healthy individuals walking on a treadmill with normal gaits and with gaits perturbed by electrical stimulation. We compared the model-inferred gait phases to gait phases measured externally via a force plate. We found that SLDS models accounted for over 88% of the variation in each joint angle and labeled the joint kinematics with the correct gait phase with 84% precision on average. The transitions between hidden states matched measured gait events, with a median absolute difference of 25ms. To our knowledge, this is the first time that SLDS inferred gait phases have been validated by an external measure of gait, instead of against predefined gait phase durations. SLDS provide individual-specific representations of gait that incorporate both gait phases and gait dynamics. SLDS may be useful for developing control policies for HRI aimed at improving gait by allowing for changes in control to be precisely timed to different gait phases.
more »
« less
- PAR ID:
- 10091278
- Date Published:
- Journal Name:
- 2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)
- Page Range / eLocation ID:
- 1181 to 1186
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Modeling individual-specific gait dynamics based on kinematic data could aid development of gait rehabilitation robotics by enabling robots to predict the user’s gait kinematics with and without external inputs, such as mechanical or electrical perturbations. Here we address a current limitation of data driven gait models, which do not yet predict human responses to perturbations. We used Switched Linear Dynamical Systems (SLDS) to model joint angle kinematic data from healthy individuals walking on a treadmill during normal gait and during gait perturbed by functional electrical stimulation (FES) to the ankle muscles. Our SLDS models were able to predict the time-evolution of joint kinematics in each of four gait phases, as well as across an entire gait cycle. Because the SLDS dynamics matrices encoded significant coupling across joints, we compared the SLDS predictions to that of a kinematic model, where the joint angles were independent. Gait kinematics predicted by SLDS and kinematic models were similar over time horizons of a few milliseconds, but SLDS models provided better predictions of gait kinematics over time horizons of up to a second. We also demonstrated that SLDS models can infer and predict individual-specific responses to FES during swing phase. As such, SLDS models may be a promising approach for online estimation and control of and human gait dynamics, allowing robotic control strategies to be tailored to an individual’s specific gait coordination patterns.more » « less
-
Passive prostheses cannot provide the net positive work required at the knee and ankle for step-over stair ascent. Powered prostheses can provide this net positive work, but user synchronization of joint motion and power input are critical to enabling natural stair ascent gaits. In this work, we build on previous phase variable-based control methods for walking and propose a stair ascent controller driven by the motion of the user's residual thigh. We use reference kinematics from an able-bodied dataset to produce knee and ankle joint trajectories parameterized by gait phase. We redefine the gait cycle to begin at the point of maximum hip flexion instead of heel strike to improve the phase estimate. Able-bodied bypass adapter experiments demonstrate that the phase variable controller replicates normative able-bodied kinematic trajectories with a root mean squared error of 12.66 deg and 2.64 deg for the knee and ankle, respectively. The knee and ankle joints provided on average 0.387J/kg and 0.212J/kg per stride, compared to the normative averages of 0.335J/kg and 0.207J/kg, respectively. Thus, this controller allows powered knee-ankle prostheses to perform net positive mechanical work to assist stair ascent.more » « less
-
Hybrid systems, such as bipedal walkers, are challenging to control because of discontinuities in their nonlinear dynamics. Little can be predicted about the systems’ evolution without modeling the guard conditions that govern transitions between hybrid modes, so even systems with reliable state sensing can be difficult to control. We propose an algorithm that allows for determining the hybrid mode of a system in real-time using data-driven analysis. The algorithm is used with data-driven dynamics identification to enable model predictive control based entirely on data. Two examples—a simulated hopper and experimental data from a bipedal walker—are used. In the context of the first example, we are able to closely approximate the dynamics of a hybrid SLIP model and then successfully use them for control in simulation. In the second example, we demonstrate gait partitioning of human walking data, accurately differentiating between stance and swing, as well as selected subphases of swing. We identify contact events, such as heel strike and toe-off, without a contact sensor using only kinematics data from the knee and hip joints, which could be particularly useful in providing online assistance during walking. Our algorithm does not assume a predefined gait structure or gait phase transitions, lending itself to segmentation of both healthy and pathological gaits. With this flexibility, impairment-specific rehabilitation strategies or assistance could be designed.more » « less
-
ABSTRACT Laboratory studies have broadened our understanding of primate arboreal locomotor biomechanics and adaptation but are necessarily limited in species availability and substrate complexity. In this field study, we filmed the locomotion of 11 species of platyrrhines (Ecuador and Costa Rica;n = 1234 strides) and remotely measured substrate diameter and orientation. We then explored ecological and phylogenetic influences on quadrupedal kinematics in multivariate space using redundancy analysis combined with variation partitioning. Among all species, phylogenetic relatedness more strongly influenced quadrupedal kinematics than variation in substrate. Callitrichines were maximally divergent from other taxa, driven by their preferred use of higher speed asymmetrical gaits. Pitheciids were also distinctive in their use of lower limb phases, including lateral sequence gaits. The biomechanical implications of interspecific differences in body mass and limb proportions account for a substantial portion of the phylogenetic‐based variation. Body mass and kinematic variation were inversely related–whereas the larger taxa (atelids) were relatively restricted in kinematic space, and preferred more stable, symmetrical gaits, the smallest species (callitrichines) used faster, more asymmetrical and less cautious gaits along with symmetrical gaits. Intermembral index had a positive relationship with limb phase, consistent with higher limb phases in atelines compared to pitheciids. Substrate alone accounted for only 2% of kinematic variation among all taxa, with substrate orientation influencing kinematics more than diameter. Substrate effects, though weak, were generally consistent with predictions and with previous laboratory and field‐based research. Excluding callitrichines and asymmetrical gaits, the influence of substrate alone remained low (2%), and the phylogenetic signal dropped from 31% to 8%. The substantial residual kinematic variation may be attributable to substrate or morphological variables not measured here, but could also reflect basic biomechanical patterns shared by all taxa that serve them well when moving arboreally, regardless of the challenges provided by any particular substrate.more » « less
An official website of the United States government

