- Publication Date:
- NSF-PAR ID:
- 10091531
- Journal Name:
- Chemical Communications
- ISSN:
- 1359-7345
- Sponsoring Org:
- National Science Foundation
More Like this
-
[RuCp*(1,3,5-R 3 C 6 H 3 )] 2 {Cp* = η 5 -pentamethylcyclopentadienyl, R = Me, Et} have previously been found to be moderately air stable, yet highly reducing, with estimated D + /0.5D 2 (where D 2 and D + represent the dimer and the corresponding monomeric cation, respectively) redox potentials of ca. −2.0 V vs. FeCp 2 +/0 . These properties have led to their use as n-dopants for organic semiconductors. Use of arenes substituted with π-electron donors is anticipated to lead to even more strongly reducing dimers. [RuCp*(1-(Me 2 N)-3,5-Me 2 C 6 H 3 )] + PF 6 − and [RuCp*(1,4-(Me 2 N) 2 C 6 H 4 )] + PF 6 − have been synthesized and electrochemically and crystallographically characterized; both exhibit D + /D potentials slightly more cathodic than [RuCp*(1,3,5-R 3 C 6 H 3 )] + . Reduction of [RuCp*(1,4-(Me 2 N) 2 C 6 H 4 )] + PF 6 − using silica-supported sodium–potassium alloy leads to a mixture of isomers of [RuCp*(1,4-(Me 2 N) 2 C 6 H 4 )] 2 , two of which have been crystallographically characterized. One of these isomers has a similar molecular structure to [RuCp*(1,3,5-Et 3more »
-
A new two-phase BaTiO 3 : La 0.7 Sr 0.3 MnO 3 nanocomposite system with a molar ratio of 8 : 2 has been grown on single crystal SrTiO 3 (001) substrates using a one-step pulsed laser deposition technique. Vertically aligned nanocomposite thin films with ultra-thin La 0.7 Sr 0.3 MnO 3 pillars embedded in the BaTiO 3 matrix have been obtained and the geometry of the pillars varies with deposition frequency. The room temperature multiferroic properties, including ferromagnetism and ferroelectricity, have been demonstrated. Anisotropic ferromagnetism and dielectric constants have been observed, which can be tuned by deposition frequencies. The tunable anisotropic optical properties originated from the conducting pillars in the dielectric matrix structure, which cause different electron transport paths. In addition, tunable band gaps have been discovered in the nanocomposites. This multiferroic and anisotropic system has shown its great potentials towards multiferroics and non-linear optics.
-
Metal oxide semiconductors have attracted much attention due to their versatility in different applications, ranging from biosensing to green energy-harvesting technologies. Among these metal oxides, oxide-based diluted magnetic semiconductors have also been proposed for fuel cell applications, especially for the oxygen reduction reaction (ORR) and the oxygen evolution reaction. However, the catalytic mechanism has been proposed to follow a two-electron pathway, forming hydrogen peroxide, instead of the four-electron pathway. Herein, we report cobalt-doped zinc oxide (CoxZn1–xO, 0 < x < 0.018) materials prepared using a co-precipitation method suitable for the electrocatalytic production of hydrogen peroxide. The electrocatalytic performance of CoxZn1–xO materials showed up to 60% hydrogen peroxide production with onset potentials near 649 mV, followed by the two-electron ORR mechanism. Ex situ X-ray absorption spectroscopy experiments at the Co K-edge demonstrated the presence of Co(II) ions at tetrahedral sites within the ZnO lattice.
-
Nanocrystalline MnFe2O4 has shown promise as a catalyst for the oxygen reduction reaction (ORR) in alkaline solutions, but the material has been sparingly studied as highly ordered thin-film catalysts. To examine the role of surface termination and Mn and Fe site occupancy, epitaxial MnFe2O4 and Fe3O4 spinel oxide films were grown on (001)- and (111)-oriented Nb:SrTiO3 perovskite substrates using molecular beam epitaxy and studied as electrocatalysts for the oxygen reduction reaction (ORR). High-resolution X-ray diffraction (HRXRD) and X-ray photoelectron spectroscopy (XPS) show the synthesis of pure phase materials, while scanning transmission electron microscopy (STEM) and reflection high-energy electron diffraction (RHEED) analysis demonstrate island-like growth of (111) surface-terminated pyramids on both (001)- and (111)-oriented substrates, consistent with the literature and attributed to the lattice mismatch between the spinel films and the perovskite substrate. Cyclic voltammograms under a N2 atmosphere revealed distinct redox features for Mn and Fe surface termination based on comparison of MnFe2O4 and Fe3O4. Under an O2 atmosphere, electrocatalytic reduction of oxygen was observed at both Mn and Fe redox features; however, a diffusion-limited current was only achieved at potentials consistent with Fe reduction. This result contrasts with that of nanocrystalline MnFe2O4 reported in the literature where the diffusion-limitedmore »
-
Abstract Sc has been employed as an electron contact to a number of two-dimensional (2D) materials (e.g. MoS2, black phosphorous) and has enabled, at times, the lowest electron contact resistance. However, the extremely reactive nature of Sc leads to stringent processing requirements and metastable device performance with no true understanding of how to achieve consistent, high-performance Sc contacts. In this work, WSe2transistors with impressive subthreshold slope (109 mV dec−1) and
I ON/I OFF(106) are demonstrated without post-metallization processing by depositing Sc contacts in ultra-high vacuum (UHV) at room temperature (RT). The lowest electron Schottky barrier height (SBH) is achieved by mildly oxidizing the WSe2in situ before metallization, which minimizes subsequent reactions between Sc and WSe2. Post metallization anneals in reducing environments (UHV, forming gas) degrade theI ON/I OFFby ~103and increase the subthreshold slope by a factor of 10. X-ray photoelectron spectroscopy indicates the anneals increase the electron SBH by 0.4–0.5 eV and correspondingly convert 100% of the deposited Sc contacts to intermetallic or scandium oxide. Raman spectroscopy and scanning transmission electron microscopy highlight the highly exothermic reactions between Sc and WSe2, which consume at least one layer RT and at least three layers after the 400 °C anneals. The observed layer consumption necessitates multiple sacrificial WSe2layers duringmore »