Abstract We report on the temperature dependent low energy electron diffraction (LEED) studies of 12 nm epitaxial Sr3Ir2O7(001) thin films. The Debye temperature has been extracted from the temperature-dependence of LEED intensity at elevated temperatures and different electron kinetic energies. For the most surface sensitive LEED, obtained at the lowest electron kinetic energies, the extracted surface Debye temperature is 270 ± 22 K, which is much lower than the 488 ± 40 K Debye temperature obtained using higher electron kinetic energies. Surprisingly, the LEED diffraction intensity, at the lowest electron kinetic energies, increases rather than decreases, with increasing sample temperatures up to about 440 K. This anomalous behavior has been attributed to the reduction of the lattice vibrational amplitudes along the surface normal. This damping of the normal mode vibrations with increasing temperature results from the enhanced electronic screening via thermally activated carriers. This scenario is corroborated by the transport measurement, showing that Sr3Ir2O7is a narrow band Mott insulator with a band gap of about 32 meV. We have identified criteria for finding anomalous scattering behavior in other transition metal oxide systems.
more »
« less
Optimizing Electron Transfer from CdSe QDs to Hydrogenase for Photocatalytic H 2 Production
A series of viologen related redox mediators of varying reduction potential has been characterized and their utility as electron shuttles between CdSe quantum dots and hydrogenase enzyme has been demonstrated. Tuning the mediator LUMO energy optimizes peformance of this hybrid photocatalytic system by balancing electron transfer rates of the shuttle
more »
« less
- PAR ID:
- 10091531
- Date Published:
- Journal Name:
- Chemical Communications
- ISSN:
- 1359-7345
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)A new two-phase BaTiO 3 : La 0.7 Sr 0.3 MnO 3 nanocomposite system with a molar ratio of 8 : 2 has been grown on single crystal SrTiO 3 (001) substrates using a one-step pulsed laser deposition technique. Vertically aligned nanocomposite thin films with ultra-thin La 0.7 Sr 0.3 MnO 3 pillars embedded in the BaTiO 3 matrix have been obtained and the geometry of the pillars varies with deposition frequency. The room temperature multiferroic properties, including ferromagnetism and ferroelectricity, have been demonstrated. Anisotropic ferromagnetism and dielectric constants have been observed, which can be tuned by deposition frequencies. The tunable anisotropic optical properties originated from the conducting pillars in the dielectric matrix structure, which cause different electron transport paths. In addition, tunable band gaps have been discovered in the nanocomposites. This multiferroic and anisotropic system has shown its great potentials towards multiferroics and non-linear optics.more » « less
-
null (Ed.)A line defect with metallic characteristics has been found in optically transparent BaSnO 3 perovskite thin films. The distinct atomic structure of the defect core, composed of Sn and O atoms, was visualized by atomic-resolution scanning transmission electron microscopy (STEM). When doped with La, dopants that replace Ba atoms preferentially segregate to specific crystallographic sites adjacent to the line defect. The electronic structure of the line defect probed in STEM with electron energy-loss spectroscopy was supported by ab initio theory, which indicates the presence of Fermi level–crossing electronic bands that originate from defect core atoms. These metallic line defects also act as electron sinks attracting additional negative charges in these wide-bandgap BaSnO 3 films.more » « less
-
Research on plasmons of gold nanoparticles has gained broad interest in nanoscience. However, ultrasmall sizes near the metal-to-nonmetal transition regime have not been explored until recently due to major synthetic difficulties. Herein, intriguing electron dynamics in this size regime is observed in atomically precise Au 333 (SR) 79 nanoparticles. Femtosecond transient-absorption spectroscopy reveals an unprecedented relaxation process of 4–5 ps—a fast phonon–phonon relaxation process, together with electron–phonon coupling (∼1 ps) and normal phonon–phonon coupling (>100 ps) processes. Three types of –R capped Au 333 (SR) 79 all exhibit two plasmon-bleaching signals independent of the –R group as well as solvent, indicating plasmon splitting and quantum effect in the ultrasmall core of Au 333 (SR) 79 . This work is expected to stimulate future work on the transition-size regime of nanometals and discovery of behavior of nascent plasmons.more » « less
-
Abstract Electron imaging of biological samples stained with heavy metals has enabled visualization of subcellular structures critical in chemical‐, structural‐, and neuro‐biology. In particular, osmium tetroxide (OsO4) has been widely adopted for selective lipid imaging. Despite the ubiquity of its use, the osmium speciation in lipid membranes and the process for contrast generation in electron microscopy (EM) have continued to be open questions, limiting efforts to improve staining protocols and therefore high‐resolution nanoscale imaging of biological samples. Following our recent success using photoemission electron microscopy (PEEM) to image mouse brain tissues with synaptic resolution, we have used PEEM to determine the nanoscale electronic structure of Os‐stained biological samples. Os(IV), in the form of OsO2, generates nanoaggregates in lipid membranes, leading to a strong spatial variation in the electronic structure and electron density of states. OsO2has a metallic electronic structure that drastically increases the electron density of states near the Fermi level. Depositing metallic OsO2in lipid membranes allows for strongly enhanced EM signals and conductivity of biological materials. The identification of the chemical species and understanding of the membrane contrast mechanism of Os‐stained biological specimens provides a new opportunity for the development of staining protocols for high‐resolution, high‐contrast EM imaging.more » « less
An official website of the United States government

