skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.

Title: Efficient Encoding and Reconstruction of HPC Datasets for Checkpoint/Restart
As the amount of data produced by HPC applications reaches the exabyte range, compression techniques are often adopted to reduce the checkpoint time and volume. Since lossless techniques are limited in their ability to achieve appreciable data reduction, lossy compression becomes a preferable option. In this work, a lossy compression technique with highly efficient encoding, purpose-built error control, and high compression ratios is proposed. Specifically, we apply a discrete cosine transform with a novel block decomposition strategy directly to double-precision floating point datasets instead of prevailing prediction-based techniques. Further, we design an adaptive quantization with two specific task-oriented quantizers: guaranteed error bounds and higher compression ratios. Using real-world HPC datasets, our approach achieves 3x-38x compression ratios while guaranteeing specified error bounds, showing comparable performance with state-of-the-art lossy compression methods, SZ and ZFP. Moreover, our method provides viable reconstructed data for various checkpoint/restart scenarios in the FLASH application, thus is considered to be a promising approach for lossy data compression in HPC I/O software stacks.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
35th Symposium on Mass Storage Systems and Technologies (MSST)
Page Range / eLocation ID:
79 to 91
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. High-performance computing (HPC) systems that run scientific simulations of significance produce a large amount of data during runtime. Transferring or storing such big datasets causes a severe I/O bottleneck and a considerable storage burden. Applying compression techniques, particularly lossy compressors, can reduce the size of the data and mitigate such overheads. Unlike lossless compression algorithms, error-controlled lossy compressors could significantly reduce the data size while respecting the user-defined error bound. DCTZ is one of the transform-based lossy compressors with a highly efficient encoding and purpose-built error control mechanism that accomplishes high compression ratios with high data fidelity. However, since DCTZ quantizes the DCT coefficients in the frequency domain, it may only partially control the relative error bound defined by the user. In this paper, we aim to improve the compression quality of DCTZ. Specifically, we propose a preconditioning method based on level offsetting and scaling to control the magnitude of input of the DCTZ framework, thereby enforcing stricter error bounds. We evaluate the performance of our method in terms of compression ratio and rate distortion with real-world HPC datasets. Our experimental result shows that our method can achieve a higher compression ratio than other state-of-the-art lossy compressors with a tighter error bound while precisely guaranteeing the user-defined error bound. 
    more » « less
  2. Scientific simulations run by high-performance computing (HPC) systems produce a large amount of data, which causes an extreme I/O bottleneck and a huge storage burden. Applying compression techniques can mitigate such overheads through reducing the data size. Unlike traditional lossless compressions, error-controlled lossy compressions, such as SZ, ZFP, and DCTZ, designed for scientists who demand not only high compression ratios but also a guarantee of certain degree of precision, is coming into prominence. While rate-distortion efficiency of recent lossy compressors, especially the DCT-based one, is promising due to its high-compression encoding, the overall coding architecture is still conservative, necessitating the quantization that strikes a balance between different encoding possibilities and varying rate-distortions. In this paper, we aim to improve the performance of DCT-based compressor, namely DCTZ, by optimizing the quantization model and encoding mechanism. Specifically, we propose a bit-efficient quantizer based on the DCTZ framework, develop a unique ordering mechanism based on the quantization table, and extend the encoding index. We evaluate the performance of our optimized DCTZ in terms of rate-distortion using real-world HPC datasets. Our experimental evaluations demonstrate that, on average, our proposed approach can improve the compression ratio of the original DCTZ by 1.38x. Moreover, combined with the extended encoding mechanism, the optimized DCTZ shows a competitive performance with state-of-the-art lossy compressors, SZ and ZFP. 
    more » « less
  3. Error-bounded lossy compression is one of the most effective techniques for reducing scientific data sizes. However, the traditional trial-and-error approach used to configure lossy compressors for finding the optimal trade-off between reconstructed data quality and compression ratio is prohibitively expensive. To resolve this issue, we develop a general-purpose analytical ratio-quality model based on the prediction-based lossy compression framework, which can effectively foresee the reduced data quality and compression ratio, as well as the impact of lossy compressed data on post-hoc analysis quality. Our analytical model significantly improves the prediction-based lossy compression in three use-cases: (1) optimization of predictor by selecting the best-fit predictor; (2) memory compression with a target ratio; and (3) in-situ compression optimization by fine-grained tuning error-bounds for various data partitions. We evaluate our analytical model on 10 scientific datasets, demonstrating its high accuracy (93.47% accuracy on average) and low computational cost (up to 18.7× lower than the trial-and-error approach) for estimating the compression ratio and the impact of lossy compression on post-hoc analysis quality. We also verify the high efficiency of our ratio-quality model using different applications across the three use-cases. In addition, our experiment demonstrates that our modeling-based approach reduces the time to store the 3D RTM data with HDF5 by up to 3.4× with 128 CPU cores over the traditional solution. 
    more » « less
  4. As the scale and complexity of high-performance computing (HPC) systems keep growing, data compression techniques are often adopted to reduce the data volume and processing time. While lossy compression becomes preferable to a lossless one because of the potential benefit of generating a high compression ratio, it would lose its worth the effort without finding an optimal balance between volume reduction and information loss. Among many lossy compression techniques, transform-based lossy algorithms utilize spatial redundancy better. However, the transform-based lossy compressor has received relatively less attention because there is a lack of understanding of its compression performance on scientific data sets. The insight of this paper is that, in transform-based lossy compressors, quantifying dominant coefficients at the block level reveals the right balance, potentially impacting overall compression ratios. Motivated by this, we characterize three transformation-based lossy compression mechanisms with different information compaction methods using the statistical features that capture data characteristics. And then, we build several prediction models using the statistical features and the characteristics of dominant coefficients and evaluate the effectiveness of each model using six HPC datasets from three production-level simulations at scale. Our results demonstrate that the random forest classifier captures the behavior of dominant coefficients precisely, achieving nearly 99% of prediction accuracy. 
    more » « less
  5. Vast volumes of data are produced by today’s scientific simulations and advanced instruments. These data cannot be stored and transferred efficiently because of limited I/O bandwidth, network speed, and storage capacity. Error-bounded lossy compression can be an effective method for addressing these issues: not only can it significantly reduce data size, but it can also control the data distortion based on user-defined error bounds. In practice, many scientific applications have specific requirements or constraints for lossy compression, in order to guarantee that the reconstructed data are valid for post hoc analysis. For example, some datasets contain irrelevant data that should be isolated in particular and users often have intuition regarding value ranges, geospatial regions, and other data subsets that are crucial for subsequent analysis. Existing state-of-the-art error-bounded lossy compressors, however, do not consider these constraints during compression, resulting in inferior compression ratios with respect to user’s post hoc analysis, due to the fact that the data itself provides little or no value for post hoc analysis. In this work we address this issue by proposing an optimized framework that can preserve diverse constraints during the error-bounded lossy compression, e.g., cleaning the irrelevant data, efficiently preserving different precision for multiple value intervals, and allowing users to set diverse precision over both regular and irregular regions. We perform our evaluation on a supercomputer with up to 2,100 cores. Experiments with six real-world applications show that our proposed diverse constraints based error-bounded lossy compressor can obtain a higher visual quality or data fidelity on reconstructed data with the same or even higher compression ratios compared with the traditional state-of-the-art compressor SZ. Our experiments also demonstrate very good scalability in compression performance compared with the I/O throughput of the parallel file system. 
    more » « less