Effects of pore fluid pressure on slip behaviors: An experimental study: FLUID PRESSURE AND SLIP BEHAVIORS
- Award ID(s):
- 1056317
- PAR ID:
- 10091978
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 40
- Issue:
- 11
- ISSN:
- 0094-8276
- Page Range / eLocation ID:
- 2619 to 2624
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Earthquake swarms attributed to subsurface fluid injection are usually assumed to occur on faults destabilized by increased pore-fluid pressures. However, fluid injection could also activate aseismic slip, which might outpace pore-fluid migration and transmit earthquake-triggering stress changes beyond the fluid-pressurized region. We tested this theoretical prediction against data derived from fluid-injection experiments that activated and measured slow, aseismic slip on preexisting, shallow faults. We found that the pore pressure and slip history imply a fault whose strength is the product of a slip-weakening friction coefficient and the local effective normal stress. Using a coupled shear-rupture model, we derived constraints on the hydromechanical parameters of the actively deforming fault. The inferred aseismic rupture front propagates faster and to larger distances than the diffusion of pressurized pore fluid.more » « less
-
Key Points Periodic pore fluid pressure perturbations on a rate‐strengthening fault induce slow slip events (SSEs) Source properties of induced SSEs vary with perturbation characteristics (length scale, amplitude, period) Model reproduces source properties of shallow Hikurangi SSEs, and duration and magnitude of SSEs in different subduction zonesmore » « less
-
Abstract Microseismicity associated with fluid pressurization in the subsurface occurs during fluid injection but can also be triggered after injection shut‐in. Understanding the extent and duration of the post‐injection microseismicity is critical to limit the risk of fluid‐induced seismicity and insure the safe utilization of the subsurface. Using theoretical and numerical techniques, we investigated how aseismic slip on a fault plane evolves and stops after a fluid pressurization event. We found that the locking mechanisms controlling the arrest of aseismic slip highly depend on the initial fault stress criticality and the pressurization duration. The absolute arrest time of fault aseismic slip after injection shut‐in is proportional to the pressurization duration and increases significantly with the initial fault stress criticality. Given that microseismicity can be triggered by aseismic slip, these results provide insights into the mechanics controlling the arrest of microseismicity after fluid pressurization as a milestone toward induced seismicity mitigation strategies.more » « less
An official website of the United States government

