Attosecond photoionization time delays reveal information about the potential energy landscape that an outgoing electron wavepacket probes upon ionization. In this study, we experimentally quantify the dependence of the time delay on the angular momentum of the liberated photoelectrons. For this purpose, we resolved electron quantum-path interference spectra in energy and angle using a two-color attosecond pump–probe photoionization experiment in helium. A fitting procedure of the angle-dependent interference pattern allows us to disentangle the relative phase of all four quantum pathways that are known to contribute to the final photoelectron signal. In particular, we resolve the dependence on angular momentum of the delay of one-photon transitions between continuum states, which is an essential and universal contribution to the total photoionization delay observed in attosecond pump–probe measurements. For such continuum–continuum transitions, we measure a delay between outgoing and electrons as large as 12 attoseconds, close to the ionization threshold in helium. Both single-active-electron and first-principlesab initiosimulations confirm this observation for helium and hydrogen, demonstrating the universality of the observed delays.
more »
« less
Attosecond Streaking Time Delays: Finite-Range Interpretation and Applications
We review theoretical studies of the attosecond streaking time delay concept in photoionization via the investigation of the electron dynamics in the streaking field after the transition of the photoelectron into the continuum upon absorption of an extreme ultraviolet photon. Based on the results, a so-called finite range interpretation was introduced, which highlighted that the delay is accumulated until the streaking pulse ends and, hence, over a finite range of the potential of the parent ion. Following a discussion of the analysis leading to this interpretation, we summarize a few applications which provide insights into different aspects of the streaking time delay concept in photoionization. Besides a review of previously presented results, we give an analysis of the relevance of the first half-cycle of the streaking field and an outlook regarding the perspective of using the streaking method to resolve dynamical changes in the potential that the photoelectron explores during its propagation in the continuum.
more »
« less
- Award ID(s):
- 1734006
- PAR ID:
- 10092001
- Date Published:
- Journal Name:
- Applied Sciences
- Volume:
- 9
- Issue:
- 3
- ISSN:
- 2076-3417
- Page Range / eLocation ID:
- 492
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Accurate characterization of an attosecond pulse from streaking trace is an indispensable step in studying the ultrafast electron dynamics on the attosecond scale. Conventional attosecond pulse retrieval methods face two major challenges: the ability to incorporate a complete physics model of the streaking process, and the ability to model the uncertainty of pulse reconstruction in the presence of noise. Here we propose a pulse retrieval method based on conditional variational generative network (CVGN) that can address both demands. Instead of learning the inverse mapping from a streaking trace to a pulse profile, the CVGN models the distribution of the pulse profile conditioned on a given streaking trace measurement, and is thus capable of assessing the uncertainty of the retrieved pulses. This capability is highly desirable for low-photon level measurement, which is typical in attosecond streaking experiments in the water window X-ray range. In addition, the proposed scheme incorporates a refined physics model that considers the Coulomb-laser coupling and photoelectron angular distribution in streaking trace generation. CVGN pulse retrievals under various simulated noise levels and experimental measurement have been demonstrated. The results showed high pulse reconstruction consistency for streaking traces when peak signal-to-noise ratio (SNR) exceeds 6, which could serve as a reference for future learning-based attosecond pulse retrieval.more » « less
-
Photoemission from solid targets includes the excitation and motion of electrons inside the substrate, followed by their propagation in vacuum and detection. It thus depends on the electronic band structure of the solid in the two distinct spectral domains of bound initial and continuum final states. While the imprint of the static (initial-state) valence electronic structure of solids on photoemission spectra is routinely examined in standard photoemission spectroscopy in the energy domain, state-of-the-art time-resolved photoelectron spectroscopy allows, in addition, the scrutiny of photoelectron propagation in the electronic continuum. Within a quantum-mechanical model for attosecond time-resolved interferometric photoelectron emission from solids, we calculated photoemission spectra as a function of the delay between the exciting primary attosecond pulse train and assisting infrared (IR) laser pulse. Accounting for final-state interactions of the photoelectron with the IR laser electric field and the periodic substrate, our numerical results for interferometric photoemission from the 3d-valence band of Cu(111) surfaces show a striking resonantly enhanced sideband yield at photoelectron kinetic energies near 24 eV, in conjunction with a pronounced increase of the photoelectron wave-function amplitude inside the solid on a length scale of a few nanometers. This resonant shift of final-state photoelectron-probability density towards the bulk can be interpreted as an increase in the photoelectron propagation time in the solid and is commensurate with the resonantly enhanced spectral sideband-phase shifts observed in recent two-pathway two-photon interference spectra by Kasmi et al. [Optica 4, 1492 (2017)].more » « less
-
Time-resolved photoionization measurements were performed on o-nitrophenol pumped with UV laser pulses at a central wavelength of 255 nm (4.9 eV) and probed with vacuum ultraviolet (VUV) pulses at 153 nm (8.1 eV). The photoelectron spectrum and time of flight mass spectrum for ions were recorded at each pump–probe delay. The measurements are interpreted with the aid of electronic structure calculations for both the neutral and ionic states. Evidence is found for the formation of a bicyclic intermediate followed by NO dissociation through a process of internal conversion and intersystem crossing. The combination of photoelectron and photoion spectroscopy, together with computational results, provides strong evidence of intersystem crossing that is difficult to establish with only a single technique.more » « less
-
One of classical tasks of the network synthesis is to construct ROMs realized via ladder networks matching rational approximations of a targeted filter transfer function. The inverse scattering can be also viewed in the network synthesis framework. The key is continuum interpretation of the synthesized network in terms of the underlying medium properties, aka embedding. We describe such an embedding via finite-difference quadrature rules (FDQR), that can be viewed as extension of the concept of the Gaussian quadrature to finite-difference schemes. One of application of this approach is the solution of earlier intractable large scale inverse scattering problems. We also discuss an important open question in the FDQR related to Lothar’s earlier contributions, in particular, a possibility of finite-difference Gauss-Kronrod rulesmore » « less
An official website of the United States government

