skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: River water quality changes in New Zealand over 26 years: response to land use intensity
Abstract. Relationships between land use and water quality are complex with interdependencies, feedbacks, and legacy effects. Most river water quality studies have assessed catchment land use as areal coverage, but here, we hypothesize and test whether land use intensity – the inputs (fertilizer, livestock) and activities (vegetation removal) of land use – is a better predictor of environmental impact. We use New Zealand (NZ) as a case study because it has had one of the highest rates of agricultural land intensification globally over recent decades. We interpreted water quality state and trends for the 26 years from 1989 to 2014 in the National Rivers Water Quality Network (NRWQN) – consisting of 77 sites on 35 mostly large river systems. To characterize land use intensity, we analyzed spatial and temporal changes in livestock density and land disturbance (i.e., bare soil resulting from vegetation loss by either grazing or forest harvesting) at the catchment scale, as well as fertilizer inputs at the national scale. Using simple multivariate statistical analyses across the 77 catchments, we found that median visual water clarity was best predicted inversely by areal coverage of intensively managed pastures. The primary predictor for all four nutrient variables (TN, NOx, TP, DRP), however, was cattle density, with plantation forest coverage as the secondary predictor variable. While land disturbance was not itself a strong predictor of water quality, it did help explain outliers of land use–water quality relationships. From 1990 to 2014, visual clarity significantly improved in 35 out of 77 (34∕77) catchments, which we attribute mainly to increased dairy cattle exclusion from rivers (despite dairy expansion) and the considerable decrease in sheep numbers across the NZ landscape, from 58 million sheep in 1990 to 31 million in 2012. Nutrient concentrations increased in many of NZ's rivers with dissolved oxidized nitrogen significantly increasing in 27∕77 catchments, which we largely attribute to increased cattle density and legacy nutrients that have built up on intensively managed grasslands and plantation forests since the 1950s and are slowly leaking to the rivers. Despite recent improvements in water quality for some NZ rivers, these legacy nutrients and continued agricultural intensification are expected to pose broad-scale environmental problems for decades to come.  more » « less
Award ID(s):
1359970
PAR ID:
10092247
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Hydrology and Earth System Sciences
Volume:
21
Issue:
2
ISSN:
1607-7938
Page Range / eLocation ID:
1149 to 1171
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Land use and land cover (LULC) can significantly alter river water, which can in turn have important impacts on downstream coastal ecosystems by delivering nutrients that promote marine eutrophication and hypoxia. Well-documented in temperate systems, less is known about the way land cover relates to water quality in low-lying coastal zones in the tropics. Here we evaluate the catchment LULC and the physical and chemical characteristics of six rivers that contribute flow into a seasonally hypoxic tropical bay in Bocas del Toro, Panama. From July 2019 to March 2020, we routinely surveyed eight physical and chemical characteristics (temperature, specific conductivity, salinity, pH, dissolved oxygen (DO), nitrate and nitrite, ammonium, and phosphate). Our goals were to determine how these physical and chemical characteristics of the rivers reflect the LULC, to compare the water quality of the focal rivers to rivers across Panama, and to discuss the potential impacts of river discharge in the Bay. Overall, we found that the six focal rivers have significantly different river water characteristics that can be linked to catchment LULC and that water quality of rivers 10 s of kilometers apart could differ drastically. Two focal catchments dominated by pristine peat swamp vegetation in San San Pond Sak, showed characteristics typical of blackwater rivers, with low pH, dissolved oxygen, and nutrients. The remaining four catchments were largely mountainous with >50% forest cover. In these rivers, variation in nutrient concentrations were associated with percent urbanization. Comparisons across Panamanian rivers covered in a national survey to our focal rivers shows that saltwater intrusions and low DO of coastal swamp rivers may result in their classification by a standardized water quality index as having slightly contaminated water quality, despite this being their natural state. Examination of deforestation over the last 20 years, show that changes were <10% in the focal catchments, were larger in the small mountainous catchments and suggest that in the past 20 years the physical and chemical characteristics of river water that contributes to Almirante Bay may have shifted slightly in response to these moderate land use changes. (See supplementary information for Spanish-language abstract). 
    more » « less
  2. This dataset contains yearly projections of emission factors (EFs) for fertilizer-induced direct nitrous oxide (N2O) emissions across the global agricultural lands with a spatial resolution of 0.5° × 0.5° from 1990 to 2050. Emission factor (EF) is defined as the amount of N2O emitted per unit of nitrogen (N) fertilizer applied, expressed in percentage (%). They are developed from a hybrid modeling framework, Dym-EF (more details can be found in Li et al., 2024). The framework integrates machine learning approaches with an ensemble of eight process-based models from The Global N2O Model Intercomparison Project phase 2 (NMIP2) to learn the relationship between EF dynamics and multiple environmental factors, such as climate, soil properties, nitrogen fertilizer input, and other agricultural management practices. After the hybrid modeling framework was extensively validated, we applied it to develop EF projections under different nitrogen management policies and climate change scenarios, including future climate data from 37 Global Climate Models (GCMs). The annual median and standard deviation (SD) of EF under each scenario represent the projection median and variability derived from climate input data using the 37 GCMs.The dataset filenames follow the structure: 'Scenario'_'N regulation'_'Median/SD', where 'Scenario' corresponds to the different nitrogen management and climate scenarios (e.g., INMS1, INMS2, and INMS3), 'N regulation' corresponds to the different nitrogen management levels (e.g., BAU, LowNRegul, and MedNRegul), and 'Median/SD' indicates whether the file contains the median (Median) or standard deviation (SD) of the projections. All relevant data and further details can be found in the supplementary materials and the cited references.INMS1: Business-as-usual, Land use regulation: Medium, Diet: Meat & dairy-rich, Ambition level: LowINMS2: Low-nitrogen regulation, Land use regulation: Medium, Diet: Medium meat & dairy, Ambition level: LowINMS3: Medium-nitrogen regulation, Land use regulation: Medium, Diet: Medium meat & dairy, Ambition level: ModerateINMS4: High-nitrogen regulation, Land use regulation: Medium, Diet: Medium meat & dairy, Ambition level: HighINMS5: Best-case, Land use regulation: Strong, Diet: Low meat & dairy, Ambition level: HighINMS6: Best-case “Plus”, Land use regulation: Strong, Diet: Ambitious diet shift and food-loss/waste reductions, Ambition level: HighINMS7: Bioenergy, Land use regulation: Strong, Diet: Low meat & dairy, Ambition level: HighWe developed this data using the “ranger” package in R 4.1.1, which is accessible at https://cran.r-project.org/web/packages/ranger/. The optimization of the two hyperparameters (ntree and mtry) was performed using the ‘caret’ package, available at https://topepo.github.io/caret/.This database is developed by Li, L., C. Lu, W. Winiwarter, H. Tian, J. Canadell, A. Ito, A.K. Jain, S. Kou-Giesbrecht, S. Pan, N. Pan, H. Shi, Q. Sun, N. Vuichard, S. Ye., S. Zaehle, Q. Zhu. Enhanced nitrous oxide emission factors due to climate change increase the mitigation challenge in the agricultural sector Global Change Biology (In Press) 
    more » « less
  3. null (Ed.)
    As pressure on the dairy industry to reduce its environmental impact increases, efficient recycling of manure nutrients through local cropping systems becomes crucial. The aim of this study was to calculate annual nitrogen (N) and phosphorus (P) budgets in six counties located in the Magic Valley, Idaho and estimate what distance manure would need to be transported to be in balance with crop nutrient demand given current dairy cattle populations and cropping systems. Our analysis suggests that crop N needs will not be met solely by manure, and synthetic fertilizer will need to be applied. However, to balance P with crop production, manure would need to be transported a minimum of 12.9 km from dairies and would have to replace synthetic fertilizer P on 91% of regional cropland. Education of producers and technical specialists would be necessary to improve the management of manure use in regional cropping systems. Technical solutions such as alternative diets for cattle and nutrient capture from manure streams will also likely be necessary to bring regional P into balance to protect environmental quality and improve the sustainability of the regional dairy industry. 
    more » « less
  4. It is essential to identify the dominant flow paths, hot spots and hot periods of hydrological nitrate-nitrogen (NO3-N) losses for developing nitrogen loads reduction strategies in agricultural watersheds. Coupled biogeochemical transformations and hydrological connectivity regulate the spatiotemporal dynamics of water and NO3-N export along surface and subsurface flows. However, modeling performance is usually limited by the oversimplification of natural and human-managed processes and insufficient representation of spatiotemporally varied hydrological and biogeochemical cycles in agricultural watersheds. In this study, we improved a spatially distributed process-based hydro-ecological model (DLEM-catchment) and applied the model to four tile-drained catchments with mixed agricultural management and diverse landscape in Iowa, Midwestern US. The quantitative statistics show that the improved model well reproduced the daily and monthly water discharge, NO3-N concentration and loading measured from 2015 to 2019 in all four catchments. The model estimation shows that subsurface flow (tile flow + lateral flow) dominates the discharge (70%-75%) and NO3-N loading (77%-82%) over the years. However, the contributions of tile drainage and lateral flow vary remarkably among catchments due to different tile-drained area percentages and the presence of farmed potholes (former depressional wetlands that have been drained for agricultural production). Furthermore, we found that agricultural management (e.g. tillage and fertilizer management) and catchment characteristics (e.g. soil properties, farmed potholes, and tile drainage) play important roles in predicting the spatial distributions of NO3-N leaching and loading. The simulated results reveal that the model improvements in representing water retention capacity (snow processes, soil roughness, and farmed potholes) and tile drainage improved model performance in estimating discharge and NO3-N export at a daily time step, while improvement of agricultural management mainly impacts NO3-N export prediction. This study underlines the necessity of characterizing catchment properties, agricultural management practices, flow-specific NO3-N movement, and spatial heterogeneity of NO3-N fluxes for accurately simulating water quality dynamics and predicting the impacts of agricultural conservation nutrient reduction strategies. 
    more » « less
  5. Abstract Lake water clarity, phytoplankton biomass, and hypolimnetic oxygen concentration are metrics of water quality that are highly degraded in eutrophic systems. Eutrophication is linked to legacy nutrients stored in catchment soils and in lake sediments. Long lags in water quality improvement under scenarios of nutrient load reduction to lakes indicate an apparent ecosystem memory tied to the interactions between water biogeochemistry and lake sediment nutrients. To investigate how nutrient legacies and ecosystem memory control lake water quality dynamics, we coupled nutrient cycling and lake metabolism in a model to recreate long‐term water quality of a eutrophic lake (Lake Mendota, Wisconsin, USA). We modeled long‐term recovery of water quality under scenarios of nutrient load reduction and found that the rates and patterns of water quality improvement depended on changes in phosphorus (P) and organic carbon storage in the water column and sediments. Through scenarios of water quality improvement, we showed that water quality variables have distinct phases of change determined by the turnover rates of storage pools—an initial and rapid water quality improvement due to water column flushing, followed by a much longer and slower improvement as sediment P pools were slowly reduced. Water clarity, phytoplankton biomass, and hypolimnetic dissolved oxygen differed in their time responses. Water clarity and algal biomass improved within years of nutrient reductions, but hypolimnetic oxygen took decades to improve. Even with reduced catchment loading, recovery of Lake Mendota to a mesotrophic state may require decades due to nutrient legacies and long ecosystem memory. 
    more » « less