skip to main content


Title: River water quality changes in New Zealand over 26 years: response to land use intensity

Abstract. Relationships between land use and water quality are complex with interdependencies, feedbacks, and legacy effects. Most river water quality studies have assessed catchment land use as areal coverage, but here, we hypothesize and test whether land use intensity – the inputs (fertilizer, livestock) and activities (vegetation removal) of land use – is a better predictor of environmental impact. We use New Zealand (NZ) as a case study because it has had one of the highest rates of agricultural land intensification globally over recent decades. We interpreted water quality state and trends for the 26 years from 1989 to 2014 in the National Rivers Water Quality Network (NRWQN) – consisting of 77 sites on 35 mostly large river systems. To characterize land use intensity, we analyzed spatial and temporal changes in livestock density and land disturbance (i.e., bare soil resulting from vegetation loss by either grazing or forest harvesting) at the catchment scale, as well as fertilizer inputs at the national scale. Using simple multivariate statistical analyses across the 77 catchments, we found that median visual water clarity was best predicted inversely by areal coverage of intensively managed pastures. The primary predictor for all four nutrient variables (TN, NOx, TP, DRP), however, was cattle density, with plantation forest coverage as the secondary predictor variable. While land disturbance was not itself a strong predictor of water quality, it did help explain outliers of land use–water quality relationships. From 1990 to 2014, visual clarity significantly improved in 35 out of 77 (34∕77) catchments, which we attribute mainly to increased dairy cattle exclusion from rivers (despite dairy expansion) and the considerable decrease in sheep numbers across the NZ landscape, from 58 million sheep in 1990 to 31 million in 2012. Nutrient concentrations increased in many of NZ's rivers with dissolved oxidized nitrogen significantly increasing in 27∕77 catchments, which we largely attribute to increased cattle density and legacy nutrients that have built up on intensively managed grasslands and plantation forests since the 1950s and are slowly leaking to the rivers. Despite recent improvements in water quality for some NZ rivers, these legacy nutrients and continued agricultural intensification are expected to pose broad-scale environmental problems for decades to come.

 
more » « less
Award ID(s):
1359970
NSF-PAR ID:
10092247
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Hydrology and Earth System Sciences
Volume:
21
Issue:
2
ISSN:
1607-7938
Page Range / eLocation ID:
1149 to 1171
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. It is essential to identify the dominant flow paths, hot spots and hot periods of hydrological nitrate-nitrogen (NO3-N) losses for developing nitrogen loads reduction strategies in agricultural watersheds. Coupled biogeochemical transformations and hydrological connectivity regulate the spatiotemporal dynamics of water and NO3-N export along surface and subsurface flows. However, modeling performance is usually limited by the oversimplification of natural and human-managed processes and insufficient representation of spatiotemporally varied hydrological and biogeochemical cycles in agricultural watersheds. In this study, we improved a spatially distributed process-based hydro-ecological model (DLEM-catchment) and applied the model to four tile-drained catchments with mixed agricultural management and diverse landscape in Iowa, Midwestern US. The quantitative statistics show that the improved model well reproduced the daily and monthly water discharge, NO3-N concentration and loading measured from 2015 to 2019 in all four catchments. The model estimation shows that subsurface flow (tile flow + lateral flow) dominates the discharge (70%-75%) and NO3-N loading (77%-82%) over the years. However, the contributions of tile drainage and lateral flow vary remarkably among catchments due to different tile-drained area percentages and the presence of farmed potholes (former depressional wetlands that have been drained for agricultural production). Furthermore, we found that agricultural management (e.g. tillage and fertilizer management) and catchment characteristics (e.g. soil properties, farmed potholes, and tile drainage) play important roles in predicting the spatial distributions of NO3-N leaching and loading. The simulated results reveal that the model improvements in representing water retention capacity (snow processes, soil roughness, and farmed potholes) and tile drainage improved model performance in estimating discharge and NO3-N export at a daily time step, while improvement of agricultural management mainly impacts NO3-N export prediction. This study underlines the necessity of characterizing catchment properties, agricultural management practices, flow-specific NO3-N movement, and spatial heterogeneity of NO3-N fluxes for accurately simulating water quality dynamics and predicting the impacts of agricultural conservation nutrient reduction strategies. 
    more » « less
  2. Abstract

    Understanding land use/land cover (LULC) effects on tropical soil infiltration is crucial for maximizing watershed scale hydro‐ecosystem services and informing land managers. This paper reports results from a multiyear investigation of LULC effects on soil bulk infiltration in steep, humid tropical, and lowland catchments. A rainfall simulator applied water at measured rates on 2 × 6 m plots producing infiltration through structured, granulated, and macroporous Ferralsols in Panama's central lowlands. Time‐lapse electrical resistivity tomography (ERT) helped to visualize infiltration depth and bulk velocity. A space‐for‐time substitution methodology allowed a land‐use history investigation by considering the following: (a) a continuously heavy‐grazed cattle pasture, (b) a rotationally grazed traditional cattle pasture, (c) a 4‐year‐old (y.o.) silvopastoral system with nonnative improved pasture grasses and managed intensive rotational grazing, (d) a 7 y.o. teak (Tectona grandis) plantation, (e) an approximately 10 y.o. secondary succession forest, (f) a 12 y.o. coffee plantation(Coffea canephora), (g) an approximately 30 y.o. secondary succession forest, and (h) a >100 y.o. secondary succession forest. Within a land cover, unique plot sites totalled two at (a), (c), (d), (e), and (g); three at (b); and one at (f) and (h). Our observations confirmed measured infiltration scale dependency by comparing our 12 m2plot‐scale measurements against 8.9 cm diameter core‐scale measurements collected by others from nearby sites. Preferential flow pathways (PFPs) significantly increased soil infiltration capacity, particularly in forests greater than or equal to 10 y.o. Time‐lapse ERT observations revealed shallower rapid bulk infiltration and increased rapid lateral subsurface flow in pasture land covers when compared with forest land covers and highlighted how much subsurface flow pathways can vary within the Ferralsol soil class. Results suggest that LULC effects on PFPs are the dominant mechanism by which LULC affects throughfall partitioning, runoff generation, and flow pathways.

     
    more » « less
  3. null (Ed.)
    Abstract. Quantifying how vegetation mediates water partitioning at different spatialand temporal scales in complex, managed catchments is fundamental forlong-term sustainable land and water management. Estimations fromecohydrological models conceptualising how vegetation regulates theinterrelationships between evapotranspiration losses, catchment water storage dynamics, and recharge and runoff fluxes are needed to assess water availability for a range of ecosystem services and evaluate how these might change under increasing extreme events, such as droughts. Currently, the feedback mechanisms between water and mosaics of different vegetation and land cover are not well understood across spatial scales, and the effects of different scaleson the skill of ecohydrological models needs to be clarified. We used thetracer-aided ecohydrological model EcH2O-iso in an intensively monitored 66 km2 mixed land use catchment in northeastern Germany to quantify water flux–storage–age interactions at four model grid resolutions (250, 500, 750, and 1000 m). This used a fusion of field (including precipitation, soil water, groundwater, and stream isotopes) and remote sensing data in the calibration. Multicriteria calibration across the catchment at each resolution revealed some differences in the estimation of fluxes, storages, and water ages. In general, model sensitivity decreased and uncertainty increased with coarser model resolutions. Larger grids were unable to replicate observed streamflow and distributed isotope dynamics in the way smaller pixels could. However, using isotope data in the calibration still helped constrain the estimation of fluxes, storage, and water ages at coarserresolutions. Despite using the same data and parameterisation for calibration at different grid resolutions, the modelled proportion of fluxes differed slightly at each resolution, with coarse models simulating higher evapotranspiration, lower relative transpiration, increased overland flow, and slower groundwater movement. Although the coarser resolutions also revealed higher uncertainty and lower overall model performance, the overall results were broadly similar. The study shows that tracers provide effective calibration constraints on larger resolution ecohydrological modelling and help us understand the influence of grid resolution on the simulation of vegetation–soil interactions. This is essential in interpreting associated uncertainty in estimating land use influence on large-scale “blue” (ground and surface water) and “green” (vegetation and evaporated water) fluxes, particularly for future environmental change. 
    more » « less
  4. Land use and land cover (LULC) can significantly alter river water, which can in turn have important impacts on downstream coastal ecosystems by delivering nutrients that promote marine eutrophication and hypoxia. Well-documented in temperate systems, less is known about the way land cover relates to water quality in low-lying coastal zones in the tropics. Here we evaluate the catchment LULC and the physical and chemical characteristics of six rivers that contribute flow into a seasonally hypoxic tropical bay in Bocas del Toro, Panama. From July 2019 to March 2020, we routinely surveyed eight physical and chemical characteristics (temperature, specific conductivity, salinity, pH, dissolved oxygen (DO), nitrate and nitrite, ammonium, and phosphate). Our goals were to determine how these physical and chemical characteristics of the rivers reflect the LULC, to compare the water quality of the focal rivers to rivers across Panama, and to discuss the potential impacts of river discharge in the Bay. Overall, we found that the six focal rivers have significantly different river water characteristics that can be linked to catchment LULC and that water quality of rivers 10 s of kilometers apart could differ drastically. Two focal catchments dominated by pristine peat swamp vegetation in San San Pond Sak, showed characteristics typical of blackwater rivers, with low pH, dissolved oxygen, and nutrients. The remaining four catchments were largely mountainous with >50% forest cover. In these rivers, variation in nutrient concentrations were associated with percent urbanization. Comparisons across Panamanian rivers covered in a national survey to our focal rivers shows that saltwater intrusions and low DO of coastal swamp rivers may result in their classification by a standardized water quality index as having slightly contaminated water quality, despite this being their natural state. Examination of deforestation over the last 20 years, show that changes were <10% in the focal catchments, were larger in the small mountainous catchments and suggest that in the past 20 years the physical and chemical characteristics of river water that contributes to Almirante Bay may have shifted slightly in response to these moderate land use changes. (See supplementary information for Spanish-language abstract). 
    more » « less
  5. Abstract

    Few long‐term studies have explored how intensively managed short rotation forest plantations interact with climate variability. We examine how prolonged severe drought and forest operations affect runoff in 11 experimental catchments on private corporate forest land near Nacimiento in south central Chile over the period 2008–2019. The catchments (7.7–414 ha) contain forest plantations of exotic fast‐growing species (Pinus radiata,Eucalyptus spp.) at various stages of growth in a Mediterranean climate (mean long‐term annual rainfall = 1381 mm). Since 2010, a drought, unprecedented in recent history, has reduced rainfall at Nacimiento by 20%, relative to the long‐term mean. Pre‐drought runoff ratios were <0.2 under 8‐year‐old Eucalyptus; >0.4 under 21‐year‐old Radiata pine and >0.8 where herbicide treatments had controlled vegetation for 2 years in 38% of the catchment area. Early in the study period, clearcutting of Radiata pine (85%–95% of catchment area) increased streamflow by 150 mm as compared with the year before harvest, while clearcutting and partial cuts of Eucalyptus did not increase streamflow. During 2008–2019, the combination of emerging drought and forestry treatments (replanting with Eucalyptus after clearcutting of Radiata pine and Eucalyptus) reduced streamflow by 400–500 mm, and regeneration of previously herbicide‐treated vegetation combined with growth of Eucalyptus plantations reduced streamflow by 1125 mm (87% of mean annual precipitation 2010–2019). These results from one of the most comprehensive forest catchment studies in the world on private industrial forest land indicate that multiple decades of forest management have reduced deep soil moisture reservoirs. This effect has been exacerbated by drought and conversion from Radiata pine to Eucalyptus, apparently largely eliminating subsurface supply to streamflow. The findings reveal tradeoffs between wood production and water supply, provide lessons for adapting forest management to the projected future drier climate in Chile, and underscore the need for continued experimental work in managed forest plantations.

     
    more » « less