skip to main content


Title: Instrument-Armed Bandits
We extend the classic multi-armed bandit (MAB) model to the setting of noncompliance, where the arm pull is a mere instrument and the treatment applied may differ from it, which gives rise to the instrument-armed bandit (IAB) problem. The IAB setting is relevant whenever the experimental units are human since free will, ethics, and the law may prohibit unrestricted or forced application of treatment. In particular, the setting is relevant in bandit models of dynamic clinical trials and other controlled trials on human interventions. Nonetheless, the setting has not been fully investigate in the bandit literature. We show that there are various and divergent notions of regret in this setting, all of which coincide only in the classic MAB setting. We characterize the behavior of these regrets and analyze standard MAB algorithms. We argue for a particular kind of regret that captures the causal effect of treatments but show that standard MAB algorithms cannot achieve sublinear control on this regret. Instead, we develop new algorithms for the IAB problem, prove new regret bounds for them, and compare them to standard MAB algorithms in numerical examples.  more » « less
Award ID(s):
1656996
NSF-PAR ID:
10092359
Author(s) / Creator(s):
Date Published:
Journal Name:
Proceedings of Machine Learning Research
Volume:
83
ISSN:
2640-3498
Page Range / eLocation ID:
529-546
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Daumé III, Hal ; Singh, Aarti (Ed.)
    Thompson sampling for multi-armed bandit problems is known to enjoy favorable performance in both theory and practice. However, its wider deployment is restricted due to a significant computational limitation: the need for samples from posterior distributions at every iteration. In practice, this limitation is alleviated by making use of approximate sampling methods, yet provably incorporating approximate samples into Thompson Sampling algorithms remains an open problem. In this work we address this by proposing two efficient Langevin MCMC algorithms tailored to Thompson sampling. The resulting approximate Thompson Sampling algorithms are efficiently implementable and provably achieve optimal instance-dependent regret for the Multi-Armed Bandit (MAB) problem. To prove these results we derive novel posterior concentration bounds and MCMC convergence rates for log-concave distributions which may be of independent interest. 
    more » « less
  2. We consider a multi-agent multi-armed bandit setting in which n honest agents collaborate over a network to minimize regret but m malicious agents can disrupt learning arbitrarily. Assuming the network is the complete graph, existing algorithms incur O((m + K/n) łog (T) / Δ ) regret in this setting, where K is the number of arms and Δ is the arm gap. For m łl K, this improves over the single-agent baseline regret of O(Kłog(T)/Δ). In this work, we show the situation is murkier beyond the case of a complete graph. In particular, we prove that if the state-of-the-art algorithm is used on the undirected line graph, honest agents can suffer (nearly) linear regret until time is doubly exponential in K and n . In light of this negative result, we propose a new algorithm for which the i -th agent has regret O(( dmal (i) + K/n) łog(T)/Δ) on any connected and undirected graph, where dmal(i) is the number of i 's neighbors who are malicious. Thus, we generalize existing regret bounds beyond the complete graph (where dmal(i) = m), and show the effect of malicious agents is entirely local (in the sense that only the dmal (i) malicious agents directly connected to i affect its long-term regret). 
    more » « less
  3. We develop a novel and generic algorithm for the adversarial multi-armed bandit problem (or more generally the combinatorial semi-bandit problem). When instantiated differently, our algorithm achieves various new data-dependent regret bounds improving previous work. Examples include: 1) a regret bound depending on the variance of only the best arm; 2) a regret bound depending on the first-order path-length of only the best arm; 3) a regret bound depending on the sum of the first-order path-lengths of all arms as well as an important negative term, which together lead to faster convergence rates for some normal form games with partial feedback; 4) a regret bound that simultaneously implies small regret when the best arm has small loss {\it and} logarithmic regret when there exists an arm whose expected loss is always smaller than those of other arms by a fixed gap (e.g. the classic i.i.d. setting). In some cases, such as the last two results, our algorithm is completely parameter-free. The main idea of our algorithm is to apply the optimism and adaptivity techniques to the well-known Online Mirror Descent framework with a special log-barrier regularizer. The challenges are to come up with appropriate optimistic predictions and correction terms in this framework. Some of our results also crucially rely on using a sophisticated increasing learning rate schedule. 
    more » « less
  4. In this work, we study the optimal design of two-armed clinical trials to maximize the accuracy of parameter estimation in a statistical model, where the interaction between patient covariates and treatment are explicitly incorporated to enable precision medication decisions. Such a modeling extension leads to significant complexities for the produced optimization problems because they include optimization over design and covariates concurrently. We take a min-max optimization model and minimize (over design) the maximum (over population) variance of the estimated interaction effect between treatment and patient covariates. This results in a min-max bilevel mixed integer nonlinear programming problem, which is notably challenging to solve. To address this challenge, we introduce a surrogate optimization model by approximating the objective function, for which we propose two solution approaches. The first approach provides an exact solution based on reformulation and decomposition techniques. In the second approach, we provide a lower bound for the inner optimization problem and solve the outer optimization problem over the lower bound. We test our proposed algorithms with synthetic and real-world data sets and compare them with standard (re)randomization methods. Our numerical analysis suggests that the proposed approaches provide higher-quality solutions in terms of the variance of estimators and probability of correct selection. We also show the value of covariate information in precision medicine clinical trials by comparing our proposed approaches to an alternative optimal design approach that does not consider the interaction terms between covariates and treatment. Summary of Contribution: Precision medicine is the future of healthcare where treatment is prescribed based on each patient information. Designing precision medicine clinical trials, which are the cornerstone of precision medicine, is extremely challenging because sample size is limited and patient information may be multidimensional. This work proposes a novel approach to optimally estimate the treatment effect for each patient type in a two-armed clinical trial by reducing the largest variance of personalized treatment effect. We use several statistical and optimization techniques to produce efficient solution methodologies. Results have the potential to save countless lives by transforming the design and implementation of future clinical trials to ensure the right treatments for the right patients. Doing so will reduce patient risks and reduce costs in the healthcare system. 
    more » « less
  5. We study the non-stationary stochastic multi- armed bandit (MAB) problem and propose two generic algorithms, namely, Limited Memory Deterministic Sequencing of Exploration and Exploitation (LM-DSEE) and Sliding-Window Upper Confidence Bound# (SW-UCB#). We rigorously analyze these algorithms in abruptly-changing and slowly-varying environments and characterize their performance. We show that the expected cumulative regret for these algorithms in either of the environments is upper bounded by sublinear functions of time, i.e., the time average of the regret asymptotically converges to zero. We complement our analysis with numerical illustrations. 
    more » « less